• Title/Summary/Keyword: Weighted estimator

Search Result 118, Processing Time 0.022 seconds

Logistic Regression for Retrospective Studies

  • Shin, Mi-Young
    • Journal of Korean Society for Quality Management
    • /
    • v.22 no.4
    • /
    • pp.111-119
    • /
    • 1994
  • We consider logistic models based on retrospective, case-control data with stratified samples and study the Weighted Exogeneous Sampling Maximum Likelihood (WESMU) We develop a consistent estimator of the asymptotic covariance matrix of the WESML estimator.

  • PDF

Approximate Variance of Least Square Estimators for Regression Coefficient under Inclusion Probability Proportional to Size Sampling (포함확률비례추출에서 회귀계수 최소제곱추정량의 근사분산)

  • Kim, Kyu-Seong
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.23-32
    • /
    • 2012
  • This paper deals with the bias and variance of regression coefficient estimators in a finite population. We derive approximate formulas for the bias, variance and mean square error of two estimators when we select a fixed-size inclusion probability proportional to the size sample and then estimate regression coefficients by the ordinary least square estimator as well as the weighted least square estimator based on the selected sample data. Necessary and sufficient conditions for the comparison of the two estimators in terms of variance and mean square error are suggested. In addition, a simple example is introduced to numerically compare the variance and mean square error of the two estimators.

A Robust EWMA Control Chart (로버스트 지수가중 이동평균(EWMA) 관리도)

  • Nam, Ho-Soo;Lee, Byung-Gun;Joo, Cheol-Min
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.1
    • /
    • pp.233-241
    • /
    • 1999
  • Control chart is a very extensively used tool in testing whether a process is in a state of statistical control or not. In this paper, we propose a robust EWMA(exponentially weighted moving averages) control chart for variables, which is based on the Huber's M-estimator. The Huber's M-estimator is a well-known robust estimator in sense of distributional robustness. In the proposed chart, the estimation of the process deviation is modified to have a s table level and high power. To compare the performances of the proposed control chart with other charts, some Monte Carlo simulations we performed. The simulation results show that the robust EWMA control chart has good performance.

  • PDF

Exact Variance of Location Estimator in One-Way Random Effect Models with Two Distint Group Sizes

  • Lee, Young-Jo;Chung, Han-Yeong
    • Journal of the Korean Statistical Society
    • /
    • v.18 no.2
    • /
    • pp.118-124
    • /
    • 1989
  • In the one-way random effect model, we often estimate the variance components by the ANOVA method and then estimate the population mean. Whe there are only two distint group sizes, the conventional mean estimator is represented as a weighted average of two normal means with weights being the function of variance component estimators. In this paper, we will study a method which can compute the exact variance of the mean estimator when we set the negative variance component estimate to zero.

  • PDF

Robustness of Minimum Disparity Estimators in Linear Regression Models

  • Pak, Ro-Jin
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.2
    • /
    • pp.349-360
    • /
    • 1995
  • This paper deals with the robustness properties of the minimum disparity estimation in linear regression models. The estimators defined as statistical quantities whcih minimize the blended weight Hellinger distance between a weighted kernel density estimator of the residuals and a smoothed model density of the residuals. It is shown that if the weights of the density estimator are appropriately chosen, the estimates of the regression parameters are robust.

  • PDF

A Modification of the Combined Estimator of Inter- and Intra-Block Estimators under an Arbitrary Convex Loss Function

  • Lee, Young-Jo
    • Journal of the Korean Statistical Society
    • /
    • v.16 no.1
    • /
    • pp.21-25
    • /
    • 1987
  • The combined estimator of inter- and intra-block estimators in incomplete block designs can be expressed as a weighted average of two location estimators. The weight should be between 0 and 1. However, the negative variance component estimate could result in the weight being negative or larger than 1. In this paper, we show that if two location estimators have symmetric unimodal distributions, truncating the weight to 0 or 1 accordingly improves the combined estimator under an arbitrary convex loss function.

  • PDF

Semiparametric accelerated failure time model for the analysis of right censored data

  • Jin, Zhezhen
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.467-478
    • /
    • 2016
  • The accelerated failure time model or accelerated life model relates the logarithm of the failure time linearly to the covariates. The parameters in the model provides a direct interpretation. In this paper, we review some newly developed practically useful estimation and inference methods for the model in the analysis of right censored data.

A COMPARATIVE EVALUATION OF THE ESTIMATORS OF THE 2-PARAMETER GENERALIZED PARETO DISTRIBUTION

  • Singh, V.P.;Ahmad, M.;Sherif, M.M.
    • Water Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.155-173
    • /
    • 2003
  • Parameters and quantiles of the 2-parameter generalized Pareto distribution were estimated using the methods of regular moments, modified moments, probability weighted moments, linear moments, maximum likelihood, and entropy for Monte Carlo-generated samples. The performance of these seven estimators was statistically compared, with the objective of identifying the most robust estimator. It was found that in general the methods of probability-weighted moments and L-moments performed better than the methods of maximum likelihood estimation, moments and entropy, especially for smaller values of the coefficient of variation and probability of exceedance.

  • PDF

COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF AANA RANDOM VARIABLES AND ITS APPLICATION IN NONPARAMETRIC REGRESSION MODELS

  • Shen, Aiting;Zhang, Yajing
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.327-349
    • /
    • 2021
  • In this paper, we main study the strong law of large numbers and complete convergence for weighted sums of asymptotically almost negatively associated (AANA, in short) random variables, by using the Marcinkiewicz-Zygmund type moment inequality and Roenthal type moment inequality for AANA random variables. As an application, the complete consistency for the weighted linear estimator of nonparametric regression models based on AANA errors is obtained. Finally, some numerical simulations are carried out to verify the validity of our theoretical result.

Effect of Bias on the Pearson Chi-squared Test for Two Population Homogeneity Test

  • Heo, Sunyeong
    • Journal of Integrative Natural Science
    • /
    • v.5 no.4
    • /
    • pp.241-245
    • /
    • 2012
  • Categorical data collected based on complex sample design is not proper for the standard Pearson multinomial-based chi-squared test because the observations are not independent and identically distributed. This study investigates effects of bias of point estimator of population proportion and its variance estimator to the standard Pearson chi-squared test statistics when the sample is collected based on complex sampling scheme. This study examines the effect under two population homogeneity test. The standard Pearson test statistic can be partitioned into two parts; the first part is the weighted sum of ${\chi}^2_1$ with eigenvalues of design matrix as their weights, and the additional second part which is added due to the biases of the point estimator and its variance estimator. Our empirical analysis shows that even though the bias of point estimator is small, Pearson test statistic is very much inflated due to underestimate the variance of point estimator. In the connection of design-based variance estimator and its design matrix, the bigger the average of eigenvalues of design matrix is, the larger relative size of which the first component part to Pearson test statistic is taking.