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Abstract
The accelerated failure time model or accelerated life model relates the logarithm of the failure time lin-

early to the covariates. The parameters in the model provides a direct interpretation. In this paper, we review
some newly developed practically useful estimation and inference methods for the model in the analysis of right
censored data.
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1. Introduction

The survival data are common in many fields, such as economics, business, industrial engineering and
biomedical studies. The nonparametric and semiparametric modeling has been studied extensively
because it offers valid estimation and inference with less stringent model assumptions. The Cox
proportional hazards model is the most used semiparametric regression models for the analysis of
survival data (Cox, 1972) due to the availability of statistical software packages for implementation
of the estimation and inference procedures. The accelerated failure time (AFT) models relates the
logarithm of the failure time linearly to the covariates. The parameters in the model provides a direct
interpretation. However, its estimation and inference procedures are challenging in the presence of
censroing. Over the last forty years, there has been considerable research on the AFT models, see
Buckely and James (1979), Jin et al. (2003, 2006), Koul et al. (1981), Lai and Ying (1991a, 1991b,
1995), Miller and Halpern (1982), Powell (1984), Prentice (1978), Ritov (1990), Robins and Tsiatis
(1992), Tsiatis (1990), Wei et al. (1990), Yang (1997), Ying (1993), Zhou (2005a), Zeng and Lin
(2007) and among many others. An earlier review on AFT model can be found in Wei (1992). In this
paper, our goal is to review and discuss some newly developed practically useful statistical methods
which specifically deal with the semiparametric accelerated failure time model.

2. Semiparametric accelerated failure time model

Let Ti be the failure time for the ith patient, i = 1, . . . , n. Due to censoring Ci, we observe Yi =

min(Ti,Ci) and δi = I{Ti ≤ Ci} which takes value 1 if Ti ≤ Ci and 0 otherwise. The semi-parametric
AFT model is of form

log(Ti) = XT
i β + ϵi, (2.1)
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where Xi, i = 1, . . . , n are observed covariates, β is p×1 unknown parameter vector and ϵi, i = 1, . . . , n
are independent and unobserved errors (the mean of the ϵi is not necessarily 0). The semi-parametric
AFT model is essentially a regular semiparametric linear regression model and its regression coeffi-
cient β is directly quantifies the impact of covariates X on the survival time instead of the more abstract
hazard rates. Note that the logarithm in the model may be replaced by any other known strictly in-
creasing functions. However, in the presence of censoring, the intercept parameter is not included in
the model specification because the intercept parameter cannot be estimated well as pointed out in
Wei (1992).

It is assumed that conditional on the p × 1 covariate vector Xi for the ith subject, the censoring
variable Ci and the failure times Ti, i = 1, . . . , n are independent, and ϵi, i = 1, . . . , n are independent
and identically distributed random variables whose common distribution function F(·) is completely
unspecified. (Cox and Oakes, 1984; Kalbfleisch and Prentice, 2002; Lawless, 2003).

3. Point estimation

Let ei(β0) = log Yi−XT
i β0 = min{log Ti−XT

i β0, log Ci−XT
i β0} = min{ϵi, log Ci−XT

i β0}, and Ni(β; t) =
∆iI{ei(β) ≤ t}, where I(·) is the indicator function that takes value 1 when the condition is satisfied 0
otherwise.

3.1. Gehan-type rank estimator

Currently, all available estimation method starts with following estimation equation, based on the
Gehan’s statistic:

UG
n (β) =

n∑
i=1

n∑
j=1

δi

(
Xi − X j

)
I
{
Yi − Y j −

(
Xi − X j

)T
β ≤ 0

}
. (3.1)

The function UG
n is component-wise monotone in β (Fygenson and Ritov, 1994). It was shown that

solving Un(β) = 0 or ∥Un(β)∥ = 0, is equivalent to minimizing Gn(β) (Jin et al., 2003), where

Gn(β) =
n∑

i=1

n∑
j=1

δi

[
Yi − Y j −

(
Xi − X j

)T
β
]−
, (3.2)

where the notation a− means the negative part of a (e.g. 3− = 0, (−2)− = 2). The minimization of
Gn(β) can be done by following linear programming approach: Minimize

∑n
i=1

∑n
j=1 ∆iui j under linear

constraints

Yi − Y j =
(
Xi − X j

)T
β − ui j, ui j ≥ 0.

Or alternatively, the minimization of Gn(β) is equivalent to minimization of

n∑
i=1

n∑
j=1

δi

∣∣∣ei(β) − e j(β)
∣∣∣ + ∣∣∣∣∣∣∣M − βT

n∑
k=1

n∑
l=1

δk(Xl − Xk)

∣∣∣∣∣∣∣ , (3.3)

where M is the prespecified extremely large number (Jin et al., 2003). The minimization can be done
with many available statistical softwares, such as the function l1fit in R.

Therefore, point estimator of β can be obtained, which is denoted as β̂G. Under regularity condi-
tions, it was shown that β̂G is consistent and

√
n(β̂G − β) ∼ N(0,Γ) as n → ∞, where Γ = A−1

G BGA−1
G ,

the AG and BG are defined in the expression (3.6) and (3.7) with ϕ(β, t) =
∑n

j=1 I{e j(β) ≥ t}.
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3.2. Weighted logrank-type rank estimator

The general weighted log-rank estimating function for β takes the form

Uϕ(β) =
n∑

i=1

∆iϕ(β; ei(β))

Xi −
∑n

j=1 X jI
{
e j(β) ≥ ei(β)

}
∑n

j=1 I
{
e j(β) ≥ ei(β)

}
 (3.4)

or

Uϕ(β) =
n∑

i=1

∫ ∞

−∞
ϕ(β; t)

Xi −
∑n

j=1 X jI
{
e j(β) ≥ t

}
∑n

j=1 I
{
e j(β) ≥ t

}
 dNi(β; t), (3.5)

where ϕ is a possibly data-dependent weight function. When ϕ = 1, the resulting Uϕ(β) corresponds
to the log-rank (Mantel, 1966) statistics. When ϕ(β, t) =

∑n
j=1 I{e j(β) ≥ t}, the resulting Uϕ(β) corre-

spond to the UG
n (β) in (3.1), which is Gehan (1965) statistics.

Under regularity conditions, the root β̂ϕ of the estimating function Uϕ(β) satisfies that n1/2(β̂ϕ − β)
is asymptotically zero-mean normal with covariance matrix A−1

ϕ BϕA−1
ϕ , where

Aϕ = lim
n→∞

n−1
n∑

i=1

∫ ∞

−∞
ϕ(β; t)

Xi −
∑n

j=1 X jI
{
e j(β) ≥ t

}
∑n

j=1 I
{
e j(β) ≥ t

}

⊗2
λ̇(t)
λ(t)

dNi(β; t), (3.6)

Bϕ = lim
n→∞

n−1
n∑

i=1

∫ ∞

−∞
ϕ2(β; t)

Xi −
∑n

j=1 X jI
{
e j(β) ≥ t

}
∑n

j=1 I
{
e j(β) ≥ t

}

⊗2

dNi(β; t), (3.7)

A⊗2 = AAT for a matrix A (Ying et al., 1992), λ(·) is the common hazard function of the error terms,
and λ̇(t) = dλ(t)/dt (Lai and Ying, 1991b; Tsiatis, 1990; Wei et al., 1990; Wei, 1992; Ying, 1993).

In general, it is difficult to solve the equation Uϕ(β) = 0 because Uϕ(β) is neither continuous nor
componentwise monotone in β. Jin et al. (2003) overcame the difficulty by a class of monotone esti-
mation functions that approximate the general weighted log-rank estimating functions (3.4). The idea
is to use the Gehan-type rank estimator β̂G in the Section 3.1 and an iterative algorithm. Specifically,
Jin et al. (2003) proposed to use following modified estimating function of (3.4):

Ũϕ

(
β; β̂

)
=

n∑
i=1

∫ ∞

−∞
ψ

(
β̂; t +

(
β − β̂

)′
Xi

)
S (0)(β; t)

Xi −
∑n

j=1 X jI
{
e j(β) ≥ t

}
∑n

j=1 I
{
e j(β) ≥ t

}
 dNi(β; t), (3.8)

where ψ(b; x) = ϕ(b; x)/S (0)(b; x), S (0)(β; t) =
∑n

i=1 I{ei(β) ≥ t} and β̂ is a intial consistent estimator of
β0, say β̂G. It is easy to see that

Ũϕ

(
β; β̂

)
= n−1

n∑
i=1

n∑
j=1

ψ
(
β̂; ei

(
β̂
))
∆i

(
Xi − X j

)
I
{
ei(β) ≤ e j(β)

}
. (3.9)

The Ũϕ(β; β̂) is monotone in each component of β and is the gradient of the following function:

Lϕ
(
β; β̂

)
= n−1

n∑
i=1

n∑
j=1

ψ
(
β̂; ei

(
β̂
))
∆i

{
ei(β) − e j(β)

}−
. (3.10)
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Similar to (3.2), the minimisation of Lϕ(· ; β̂) can be implemented via linear programming.
The iterative algorithm for estimating β starts from setting: β̂(0) = β̂G, and β̂(k) = arg minβ Lϕ(β;

β̂(k−1)) (k ≥ 1). If β̂(k) converges to a limit as the number of iterations k → ∞, then the limit must
satisfy Uϕ(β) = 0. Therefore, the root β̂ϕ of original estimating equation Uϕ(β) = 0 can be obtained
by the iterative algorithm. Under regularity conditions, Jin et al. (2003) showed that each estimator
obtained in the k iteration β̂k is a legitimate estimator of β (consistent and asymptotically normal)
when the initial estimator is consistent and asymptotically normal, and if the β̂k converges as k → ∞,
the limit is indeed the solution of the Uϕ(β) = 0. Specifically, Jin et al. (2003) showed that β̂k is
asymptotically a weighted average of β̂ϕ and β̂G,

β̂k =

{(
Aϕ + Dϕ

)−1
Dϕ

}k
β̂G +

[
I −

{(
Aϕ + Dϕ

)−1
Dϕ

}k
]
β̂ϕ + op

(
n−

1
2

)
, (3.11)

where I is the p × p identity matrix,

Dϕ = lim
n→∞

n−1
n∑

i=1

∫
ψ̇0(t)S (0)(β0; t)

Xi −
∑n

j=1 X jI
{
e j(β) ≥ ei(β)

}
∑n

j=1 I
{
e j(β) ≥ ei(β)

}

⊗2

dNi(β0; t), (3.12)

and ψ̇0(t) is the derivative of ψ0(t), the limit of ψ(β0; t) as n→ ∞.

3.3. Least-squares-type estimator

When there is no censoring, Ti, i = 1, . . . , n are completely observed, the classical least-squares
estimator of β is obtained by minimizing

∑n
i=1(log Ti − XT

i β)2 in terms of β. The minimizer is the
solution of the equation

n∑
i=1

(
Xi − X̄

) (
log Ti − XT

i β
)
= 0, (3.13)

where X̄ = n−1 ∑n
i=1 Xi.

In the presence of censoring, we can only observe Yi and Equation (3.13) cannot be used directly.
Buckly and James (1979) proposed to replace log Ti by following

Ŷi(β) = δi log Yi + (1 − δi)


∫ ∞

ei(β) udF̂β(u)

1 − F̂β (ei(β))
+ XT

i β

 , (3.14)

where F̂β(t) is the Kaplan-Meier estimator of F(t) based on {ei(β), δi} (i = 1, . . . , n), i.e.,

F̂β(t) = 1 −
∏

i:ei(β)<t

1 − δi∑n
j=1 1

{
e j(β) ≥ ei(β)

}  .
The resulting Buckly-James estimator is the solution to the follwoing equation:

n∑
i=1

(
Xi − X̄

) (
Ŷi(β) − XT

i β
)
= 0. (3.15)
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The difficulty to solve the Equation (3.15) lies in that the function
∑n

i=1(Xi − X̄)(Ŷi(β)−XT
i β) is neither

continuous nor componentwise monotone in β. To overcome these difficulties, Jin et al. (2006)
developed an iterative procedure to obtain a class of consistent and asymptotically normal estimators.
Let Ȳ(b) = n−1 ∑n

i=1 Ŷi(b), and define

U(β, b) =
n∑

i=1

(
Xi − X̄

) (
Ŷi(b) − XT

i β
)
, (3.16)

or equivalently

U(β, b) =
n∑

i=1

(
Xi − X̄

) {
Ŷi(b) − Ȳ(b) −

(
Xi − X̄

)T
β
}
. (3.17)

Set U(β, b) = 0, which yields

β = Q(b) =

 n∑
i=1

(
Xi − X̄

)⊗2

−1  n∑

i=1

(
Xi − X̄

) {
Ŷi(b) − Ȳ(b)

} . (3.18)

It leads to an iterative algorithm

β̂(m) = Q
(
β̂(m−1)

)
, m ≥ 1. (3.19)

With the consistent initial estimator β̂(0) = β̂G, the Gehan-type estimator in the Section 3.1, Jin et
al. (2006) showed that β̂m is consistent and asymptotically normal for every m ≥ 1, and β̂(m) is
asymptotically a weighted average of the Buckley-James estimator β̂BJ and β̂G,

β̂m =
(
I − D−1A

)m
β̂G +

[
I −

(
I − D−1A

)m]
β̂BJ + op

(
n−

1
2

)
, (3.20)

where D = limn→∞(1/n)
∑n

i=1(Xi − X̄)⊗2 and A is the slope matrix of the Buckley-James estimating
function.

3.4. Kernel-smoothed profile likelihood estimator

Zeng and Lin (2007) proposed a kernel-smoothed profile likelihood estimator by an approximate
nonparametric maximum likelihood method. Based on the semiparametric AFT model (2.1), the
observed data (Yi, δi, Xi), i = 1, . . . , n yields the following log-likelihood function of β and hazard
function λ(·) of the error ϵ:

loglik =
1
n

n∑
i=1

[
−δiXT

i β + δiλ (ei(β)) − Λ (ei(β))
]
, (3.21)

Zeng and Lin (2007) showed that the direct maximization of the log-likelihood does not yield a solu-
tion. It also does not lead to the maximization of a profile likelihood obtained by replacing the λ(ei(β))
by an estimator δi/

∑n
j=1 I{e j(β) ≥ ei(β)} nor the maximization of a sieve profile likelihood obtained by

replacing the λ(·) by a piecewise constant approximation. On the other hand, an approximation of

dP (δ = 1, e(β) ≤ t) /dt
P (e(β) ≥ t)
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by

1
t

(nan)−1 ∑n
i=1 δiK

(
ei(β)−log t

an

)
∫ ∞

log(t)(nan)−1 ∑n
i=1 δiK

(
ei(β)−s

an

)
ds
,

where K(·) is a kernel function (such as the standard normal density function) and an is a bandwidth,
yields a kernel-smoothed approximation of the likelihood of β,

ls
n(β) = −1

n

n∑
i=1

δiXT
i β −

1
n

n∑
i=1

δiei(β) +
1
n

n∑
i=1

δi log

 1
nan

n∑
j=1

δ jK
(

e j(β) − ei(β)
an

)
− 1

n

n∑
i=1

δi log

1
n

n∑
j=1

∫ e j(β)−ei (β)
an

−∞
K(s)ds

 . (3.22)

The kernel-smoothed profile likelihood estimator β̂pl is obtained by maximizing the ls
n(β) and its

variance-covariance estimator is obtained by the use of the information matrix of the ls
n(β).

Given β̂pl, the λ(·) and Λ(·) can be estimated by

λ̂n(t) =
(nant)−1 ∑n

i=1 δiK
(

ei(β̂pl)−log t
an

)
(n)−1 ∑n

i=1

∫ ei(β̂pl)−log t)

an
−∞ K(u)du

, (3.23)

Λ̂n(t) =
∫ log t

−∞

(nan)−1 ∑n
i=1 δiK

(
ei(β̂pl)−log t

an

)
(n)−1 ∑n

i=1

∫ ei(β̂pl)−log t

an
−∞ K(u)du

ds. (3.24)

Under regularity conditions, Zeng and Lin (2007) showed that the estimator β̂pl achieves semipara-
metric efficiency. The challenge for the practical use is the choice of the Kernel function, bandwidth,
and the stability of the ls

n(β). Currently, there is no statistical software that implements the procedure.

4. Variance-covariance estimation

Except the kernel-smoothed profile likelihood estimator, the variance-covariance estimation of the
Gehan-type rank estimator, weighted logrank-type estimator, and least-squares-type estimator is dif-
ficult because the corresponding variance-covariance matrices involve nonparametric estimation of
the underlying probability density function. Here two computationally feasible approaches will be
presented: resampling method and induced smoothing method.

4.1. Resampling method

The resampling method is similar to the resampling scheme similar to those in Rao and Zhao (1992),
Parzen et al. (1994) and Jin et al. (2001). The basic idea is to perturb the objective functions that
are minimized or estimating equations that are solved. Let Zi (i = 1, . . . , n) be n independent positive
random variables satisfying E(Zi) = Var(Zi) = 1 and be independent of the observed data (T̃i, δi, Xi)
(i = 1, . . . , n). The Zi can be generated by a number of known distributions, such as the standard
exponential distribution or Poisson distribution Poisson(1).
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4.1.1. Variance-covariance estimation for Gehan-type estimator

Jin et al. (2003) perturbed the objective function (3.2) and used following function

G∗n(β) = n−1
n∑

i=1

n∑
j=1

δi

{
ei(β) − e j(β)

}−
Zi. (4.1)

The minimisation of G∗n is also a linear programming problem and can be implemented with many
existing softwares. Let β̂∗G be the minimiser of G∗n, it can be shown that β̂∗G is the root of the estimating
function

U∗G(β) =
n∑

i=1

n∑
j=1

δi(Xi − X j)I
{
ei(β) − e j(β) ≤ 0

}
Zi. (4.2)

Jin et al. (2003) showed that the asymptotic distribution of n1/2(β̂G − β0) can be approximated by
the conditional distribution of n1/2(β̂∗G − β̂G) given the data (T̃i, δi, Xi) (i = 1, . . . , n). Consequently,
the distribution of β̂G, can be approximated by a large number of realizations of β̂∗G by repeatedly
generating the random sample (Z1, . . . , Zn) with the observed data (T̃i, δi, Xi) (i = 1, . . . , n). The
empirical variance-covariance matrix of β̂∗G provides an estimate of the variance-covariance matrix of
β̂G. The confidence intervals and hypothesis testing for individual β can be carried out based on the
empirical distribution of β̂∗G or by the Wald method.

The developed methods are implemented in the Splus/R package lss and the design and applica-
tion features of lss are provided in Huang and Jin (2007).

4.1.2. Variance-covariance estimation for weighted logrank-type rank estimator

Due to the similarity between the objective function (3.10) for general weighted logrank-type rank
estimator and the objective function (3.2) for Gehan-type estimator, the variance-covariance matrix of
the β̂(k) can be obtained by a similar resampling approach. Specifically, we can construct the perturbed
objective function

L∗ϕ(β; b) := n−1
n∑

i=1

n∑
j=1

ψ(b; ei(b))δi

{
ei(β) − e j(β)

}−
Zi, (4.3)

and define β̂∗0 = β̂
∗
G and β̂∗k = arg minβ L∗ϕ(β; β̂∗k−1) (k ≥ 1). Jin et al. (2003) showed that the asymptotic

distribution of n1/2(β̂k − β) can be approximted by the conditional distribution of n1/2(β̂∗k − β̂k) given
the data (T̃i, δi, Xi) (i = 1, . . . , n). Inference on β can then be carried out on the basis of the empirical
distribution of β̂∗k.

4.1.3. Variance-covariance estimation for least-squares-type estimator

Jin et al. (2006) showed that the covariance matrix of β̂m can be approximated by a resampling proce-
dure. A theoretical derivation showed that both the Kaplan-Meier estimator used for the Ŷi(b) and the
estimating function (3.17) are required to be perturbed by the same Zis, (i = 1, . . . , n). Specifically,

F̂∗b(t) = 1 −
∏

i:ei(b)<t

1 − Ziδi∑n
j=1 Z j1

{
e j(b) ≥ ei(b)

}  , (4.4)
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and

Ŷ∗i (b) = δiỸi + (1 − δi)


∫ ∞

ei(b) udF̂∗b(u)

1 − F̂∗b (ei(b))
+ XT

i b

 , (4.5)

Q∗(b) =

 n∑
i=1

Zi

(
Xi − X̄

)⊗2

−1  n∑

i=1

Zi

(
Xi − X̄

) {
Ŷ∗i (b) − Ȳ∗(b)

} . (4.6)

Then, Q∗(b) leads to an iterative process β̂∗m = Q∗(β̂∗m−1), m ≥ 1. By setting the initial value β̂∗0 = β̂
∗
G,

the iteration procedure β̂∗k = L∗(β̂∗k−1) yields a β̂∗k (1 ≤ k ≤ m). Jin et al. (2006) showed that the
asymptotic distribution of n1/2(β̂k − β) can be approximted by the conditional distribution of n1/2(β̂∗k −
β̂k) given the data (T̃i, δi, Xi) (i = 1, . . . , n). Therefore, by generating random samples of (Z1, . . . ,Zn)
repeatedly N times, we can obtain N realizations of β̂∗m, denoted by β̂∗m, j ( j = 1, . . . ,N). For each
m ≥ 1, the covariance matrix of β̂m can be estimated by

s2 =
1

N − 1

N∑
j=1

(
β̂∗m, j − β̄∗m

) (
β̂∗m, j − β̄∗m

)T
, (4.7)

where β̄∗m = (1/N)
∑N

j=1 β̂
∗
m, j.

The developed methods are implemented in the Splus/R package lss and the design and applica-
tion features of lss are provided in Huang and Jin (2007).

4.2. Induced smoothing method

Brown and Wang (2005) proposed a general variance estimation procedure based on an induced
smoothing for non-smooth estimating functions. The approach is computationally efficient and easy
to implement when the smoothing in terms of integration with respect to a Gaussian distribution has
an explicit form. For the Gehan-type rank estimator, the induced smoothing in Brown and Wang
(2005) yields an explicit form and its varaince-covariance matrix can be easily estimated as shown in
Brown and Wang (2007). However, the induced smoothing in Brown and Wang (2005) for the gen-
eral logrank-weighted estimator and least-squares-type estimator does not yield an explicit form and
cannot be used directly. To overcome the difficulty, Jin et al. (2015) developed a general Monte carlo
approach for variance estimation for estimators based on induced smoothing which can be applied to
both the general logrank-weighted estimator and least-squares-type estimator.

4.2.1. Induced smoothing for Gehan-type rank estimator

Brown and Wang (2007) and Johnson and Strawderman (2009) applied the induced smoothing method
in Brown and Wang (2005) to the Gehan-type rank estimator β̂G. Because

√
n(β̂G−β) ∼ N(0, A−1

G BGA−1
G )

as n → ∞, Brown and Wang (2007) set β = β̂G + n−1/2[A−1
G BGA−1

G ]1/2W, where W ∼ N(0, I), and in-
troduced following induced smoothing estimating function

ŨG
n (V; β) = EWUG

n

(
β + n−

1
2 V

1
2 W

)
, (4.8)
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where EW denotes the expectation with respect to W. Brown and Wang (2007) showed that the
expression (4.8) has an explicit closed form, specifically,

ŨG
n (V; β) =

n∑
j=1

δ j

n∑
i=1

(
Xi − X j

)
Φ


√

n
(
ei(β) − e j(β)

)
√(

Xi − X j

)T
V

(
Xi − X j

)
 , (4.9)

whereΦ(·) is the cumulative distribution function of N(0, 1). The resulting induced smoothed estimat-
ing function ŨG

n (V; β) is continuous and differentiable function of β and ŨG
n (V; β) = 0 can be solved

iteratively with the initial values of β̂G and V0 = I. Therefore, they suggested to obtain β̂ and V̂ by
jointly solving ŨG

n (V; β) = 0 and the following equation

V = Ã−1
(
V; β̂

)
B̂G Ã−1

(
V; β̂

)
, (4.10)

where Ã(V; β) = ∂ŨG
n (V; β)/∂β and B̂G is a consistent estimator of BG. Brown and Wang (2007)

showed that the resulting parameter estimates and their covariance matrix usually converge in a few
steps.

4.2.2. Induced smoothing for weighted logrank-type rank estimator

For the weighted logrank-type rank estimator β̂ϕ, n1/2(β̂ϕ − β) is asymptotically zero-mean normal
with covariance matrix A−1

ϕ BϕA−1
ϕ . Ying et al. (1992) showed that

B̂ϕ =
1
n

n∑
i=1

{
ϕi

(
β̂
)}2

δi


∑n

j=1 1
{
e j

(
β̂
)
≥ ei

(
β̂
)}

X⊗2
j∑n

j=1 1
{
e j

(
β̂
)
≥ ei

(
β̂
)} −


∑n

j=1 1
{
e j

(
β̂
)
≥ ei

(
β̂
)}

X j∑n
j=1 1

{
e j

(
β̂
)
≥ ei

(
β̂
)} 

⊗2 .
The challenging part is to estimate Aϕ. To estimate Aϕ, we can introduce following induced smoothing
estimating function similar to (4.8),

Ũϕ(V; β) = EWUϕ

(
β + n−

1
2 V

1
2 W

)
, (4.11)

where EW denotes the expectation with respect to W. However, the expression (4.11) is too com-
plicated to be written out in simple analytic forms. Consequently, the estimation of Ãϕ(V; β) =
∂Ũϕ(V; β)/∂β is difficult to obtain. Using Stein’s identity, Jin et al. (2015) showed that

Ãϕ(V; β) = n
1
2

[
EWUϕ

(
β + n−

1
2 V

1
2 W

)
WT

]
V−

1
2 . (4.12)

Based on the result (4.12), Jin et al. (2015) showed a general Monte carlo approach that can be used
to estimate Ãϕ(V; β) as following:

Step 1: Calculate a consistent estimator B̂ϕ of the matrix Bϕ.

Step 2: Choose V0 = I and a large number m.

Step 3: For the kth step (k ≥ 1), generate z j, j = 1, . . . ,m from multivariate normal distribution
N(0, I). Estimate Ãϕ(V; β) by

Ak = A(Vk−1) = n
1
2

1
m

m∑
j=1

U
(
β̂ + n−

1
2 Vk−1z j

)
zT

j V−
1
2

k−1 (4.13)
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Step 4: Calculate Vk = A−1
k D̂A−1

k .

Step 5: Repeat Step 3 and Step 4 for next k until Vk converges.

The covariance matrix of
√

n(β̂ − β) will be estimated using the Vk at the convergence in the above
iterative algorithm.

In Jin et al. (2015), it is also shown that the Step 3 can be replaced by an approach based on
Gaussian quadrature weights.

4.2.3. Induced smoothing for least-squares-type estimator

For the least-squares-type estimator β̂m, induced smoothing estimator can developed similar to the
weighted logrank-type rank estimator in the Section 4.2.2. Here we present the results for the Buckley-
James estimator β̂BJ of the estimating equation (3.15). Ying et al. (1992) showed that n1/2(β̂BJ − β) is
asymptotically zero-mean normal with covariance matrix A−1

BJ BBJ A−1
BJ . Ying et al. (1992) also showed

that

B̂BJ =
1
n

∫  n∑
i=1

(
Xi − X̄

)⊗2
1
{
ei

(
β̂
)
≥ t

}
−

[∑n
i=1

(
Xi − X̄

)
1
{
ei

(
β̂
)
≥ t

}]⊗2

∑n
i=1 1

{
ei

(
β̂
)
≥ t

}


×

(∫ (
1 − F̂β̂(s)

)
1{s ≥ t}ds

)2(
1 − F̂β̂(t)

)3 dF̂β̂(t).

Again, the challenging part is to estimate ABJ . To estimate ABJ , we can introduce following induced
smoothing estimating function similar to (4.8) and (4.11),

ŨBJ(V; β) = EWUBJ

(
β + n−

1
2 V

1
2 W

)
, (4.14)

where EW denotes the expectation with respect to W. The expression (4.14) again does not have a
simple analytic form. Consequently, the estimation of Ãϕ(V; β) = ∂Ũϕ(V; β)/∂β can be done a Monte
Carlo method similar to the one used for the expression (4.12), i.e.,

ÃBJ(V; β) = n
1
2

[
EWUBJ

(
β + n−

1
2 V

1
2 W

)
WT

]
V−

1
2 , (4.15)

see Jin et al. (2015). The remaining steps are straightforward as in the Section 4.2.2.

5. Other developments and remarks

In this paper, we have reviewed recently developed methods for point and variance estimation for the
AFT model in the analysis of right censored data. The development is based on the assumption that
errors are independent and identically distributed. The resampling approach offers valid inference
but numerically intensive for large datasets, on the other hand, the induced smoothing approach is
attractive due to its computational efficiency.

The paper of Jin and Ying (2004) studied asymptotic theory of rank estimation for AFT model
under fixed censorship. Zhou (1992) and Jin (2007) studied M-estimation for the AFT models.

For the hypothesis testing framework, empirical likelihood approach has also been developed,
see Zhou (2005a, 2015b), Zhou and Li (2008). For the heteroscedastic errors, Stute (1993, 1996)
studied convergence properties of weighted estimators and Zhou et al. (2012) developed an empirical
likelihood approach under a hypothesis testing framework.
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For time-dependent covariates, there has been theoretical development, see Robins and Tsiatis
(1992) and Lin and Ying (1995). The profile nonparametric likelihood approach of Zeng and Lin
(2007) is applicable theoretically, but there has been no numerical investigation.

There are still many research problems, such as model checking, variable selection and efficient
and reliable software development.
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