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1. INTRODUCTION

The generalized Pareto distribution (GPD),
first proposed by Pareto in 1897 for the shape
parameter < 0, is known as the Pareto type Il
distribution as well as the Pearson type VI dis-
tribution. Since Pickands (1975) introduced the
term generalized Pareto (GP) distribution, it has
been applied to a number of areas, encom-
passing socio-economic processes, physical and
biological phenomena (Saksena and Johnson,
1984), reliability analysis, and analyses of envi-
ronmental extremes. Davison and Smith (1990)
pointed out that the GP distribution might form

the basis of a broad modeling approach to
high-level exceedances. DuMouchel (1983) ap-
plied it to estimate the tail thickness, whereas
Davison (1984a, 1984b) modeled contamination
due to long-range atmospheric transport of
radionuclides. Ochoa et al. (1980) found the
Pareto distributions to be more suitable for an-
nual peak flow data than the exponential-tailed
distributions which are common to hydrologic
frequency analysis. Van Montfort and Witter
(1985, 1986, 1991) applied the GP distribution
to model the peaks over threshold (POT)
streamflows and rainfall series, and Smith (1984,
1987) applied it to analyze flood frequencies.
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Similarly, Joe (1987) employed it to estimate
quantiles of the maximum of N observations.
Wang (1991) applied it to develop a POT model
for flood peaks with Poisson arrival time,
whereas Rosbjerg, et al. (1992) compared the
use of the 2-parameter GP and exponential dis-
tributions as distribution models for excee-
dances with the parent distribution being a gen-
eralized GP distribution. In an extreme value
analysis of the flow of Burbage Brook, Barrett
(1992) used the GP distribution to model the
POT flood series with Poisson interarrival times.
Davison and Smith (1990) presented a compre-
hensive analysis of the extremes of data by use
of the GP distribution for modeling the sizes and
occurrences of exceedances over high thresh-
olds.

The cumulative distribution function (CDF)
of the 2-parameter GPD (GPD2) of a random
variable X can be expressed as

|
F(x)zl—(l—a%)a,ai() (1)

F(x)=1-exp(- %),a =0 )

The probability density function (PDF) of the
GPD2 can be written as

1 x iy

f(X): E(l—az)a ,a#0 (3)
1 X

S(x)= Zexp(— ;),a =0 )

where a is the scale parameter with - 00 <g <o0,
b is the shape parameter with b > 0, and the
range of x is0 <x<wfora<0and 0 <x < b/a
fora > 0.

The 2-parameter GPD specializes into uni-
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form, triangular, exponential and Pareto distri-
butions as special cases. For a > 0, the distribu-
tion has a heavy Pareto-type upper tail. The case
a = 0 is the exponential distribution. When a > 0
the distribution has an upper end point at b/a.
For @ = 1/2 and 1 the distribution is triangle and
uniform respectively. The shapes of the GPD2
distribution for various values of a and b are
illustrated in ures 1a-d.

Methods for estimating the GPD2 parameters,
including the regular method of moments
(RME), probability-weighted moments (PWM),
and the method of maximum likelihood estima-
tion (MLE), were reviewed by Hosking and
Wallis (1987). Quandt (1966) used the method
of moments (RME), whereas Baxter (1980), and
Cook and Mumme (1981) used the method of
maximum likelihood estimation (MLE). Van
Montfort and Witter (1986) used MLE to fit the
GP distribution to represent the Dutch POT
rainfall series, and used an empirical correction
formula to reduce bias of the scale and shape
parameter estimates. Davison and Smith (1990)
used MLE, PWM, a graphical method, and the
least squares method to estimate the GP distri-
bution parameters. Singh and Guo (1995 a, b,
1997) presented the entropy (ENT)-based pa-
rameter estimation method for 2-parameter,
2-parameter generalized Pareto and 3-parameter
generalized Pareto distributions. Singh (1998)
summarized entropy-based parameter estimation
for the Pareto family. Moharram et al. (1993)
compared MLE, RME, PWM and least squares
method, using Monte Carlo simulation. They
found the least squares method to be superior to
other methods for shape parameter greater than
zero and PWM for shape parameter less than
Zero.

The maximum likelihood estimators exist in
large samples provided that ¢ < 1 and are as-
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Figure 1a. Probability density function of the three parameter generalized
Pareto distribution for population cases(1, 2 and 3).
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Figure 1b. Probability density function of the three parameter generalized Pareto
distribution for population cases(4, 5 and 6).
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ymptotically normal and efficient if a < 1/2
(Smith, 1985). The variance of the distribution
exists only for ¢ > - 1/2 and skewness for a
> -1/3. The main conclusions reached by Hosk-
ing and Wallis (1987) were that MLE, although
asymptotically the most efficient method, does
not clearly display its efficiency even in samples
as large as 500, that the method of moments is
generally reliable except when a < - 0.2 and that
PWM estimation may be recommended if it
seems likely that @ < 0, particularly if it is im-
portant that the estimated extreme quantiles
should have low bias or that the asymptotic the-
ory should give a good approximation to the
standard errors of the estimates.

Although, it would appear in the presence of
the above cited literature and particularly in
light of Hosking and Wallis (1987) that a new
study on parameter and guantile estimation of
the 2-parameter generalized Pareto (GPD2) dis-
tribution was not warranted. However, a closer
scrutiny suggests otherwise. For a given sample
data set, the ranges of the distribution parame-
ters are not known in advance. Rather what is
known is its mean, variance and skewness, and
other moment properties. Therefore, It would be
more logical to classify the best estimators in
terms of these readily derivable data characteris-
tics than to classify them in terms of a priori
unknown parameters. While selecting the range
of these characteristics ( coefficient of variation
in this case), all estimators should satisfy the
familiar properties of consistency, asymptotic
normality and efficiency. This approach was
followed in this study. For theoretical and prac-
tical reasons, this study was restricted within the
-1/2 < a < 1/2 range.

The objective of this paper is to statistically
compare the performance of five estimators and
variants of two of them, including the methods

Water Engineering Research, Vol. 4, No.3, 2003

of regular moments, two modified moments,
probability weighted moments, L-moments, ma-
ximum likelihood estimation and entropy, using
Monte Carlo simulated data, and statistically
evaluate the performance of these estimators.
These methods were evaluated based on their
relative performance in terms of robustness,
variability and bias of large quantile estimates
from varying sample sizes.

2. PARAMETER ESTIMATORS

2.1 Regular Moment Estimator (RME)

The moment estimation equations of GPD2
were derived by Hosking and Wallis (1987).
Note that £ (I-a(x-c)/b)" = 1/(1+ar) if 1+ra>0.
The rth moment of X exists if a>-1/r. Provided

that they exist, the moment estimators are

b
x= 1+a (5)
2. b

1+ @)% (1+ 2a) (6)

where X and s° are the mean and variance, re-
spectively. Equations (5) and (6) yield explicit
relations for estimation of ¢ and b as

=2

LA

a=302 D (7)
17

b-2x(S—2+l) (8)

2.2 Modified Moment Estimator (MME)

The regular moment estimator is valid only
when a>-2. This somehow limits the practical
application. Qaundt(1966) suggested two mo-
dified versions of the RME which involve re-
structuring equation (3) in terms some known
property of the data. These two modified meth-
ods of moments are briefly outlined below.
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2.2.1 Modified Moment Estimator (MMEL)
In this modification, equation (4) is replaced
by E[F(x;)]=F(x;), which yields

tate(o2)° ©

By substituting the value of b from equation (5),
one gets

);Tl: IZ“[I-(,,TJ"J (10)

2.2.2 Modified Moment Estimator (MME2)
In this modification , equation (4) is replaced
by E[x;]=x,;. CDF of x, is given by

n

Fr 0 =1-[1- Flt=1- {1-@%}“ an

and its PDF is
21

fxl(")%(l'”%)a (12)
Thus,

E(xl) - xl T nta (13)
Eliminating b using equation (5), one gets

f;1_ _l+a (14)

X n+a

2.3 Probability Weighted Moment Estimator

The probability-weighted moments (PWM)
estimation equations of GPD2 were given by
Hosking and Wallis (1987) as

159

W, - 4m
“Comi-w (15)
0
2w Wl
po 0"
W17, (16)

where W, = Mg, = E{x(F)[I-F(x)]"}

2.4 Method of L-Moments (MLM)

The method of L-moments is a modification
of the method of probability weighted moments
developed by Greenwood et al (1979). Follow-
ing Hosking and Wallis (1997) L-moments of
GPG?2 can be described as (a>-1):

4% 17
A =W -2W
2 0 1 (18)

The shape parameter (a) and the scale parameter
(b) can be defined as

ﬂ'l
a=—-2

12 (19)
b=(1+a)M (20)

Substituting the values of the L-moments, one

gets
i
“CSw - w 2n
| 0
2W W1
po_—0
oW1 - W, (22)

0

Equations (21) and (22) are same as equations
(15) and (16) of PWM.

2.5 Maximum Likelihood Estimator
The log-likelihood function for GPD2 given
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by equation (3) can be written as

1 n
L=-nlnb+(=-1)2X In
a i=1

x.
1-a—+
bj (23)

Differentiating the maximum likelihood func-
tion L with respect to a and b, two parameter

equations are obtained for estimation as:

N xl,/b n

i=1 l—axi/b “1-a (24)
N X,

lEl ln[l— ?l =-na (25)

Equations (24) and (25) are solved iteratively.
To find the local maximum of log L, a numerical
method 1s required. Due to the very sensitive
nature of the log function of the Pareto distribu-
tion, the rate of failure given by equation (23) is
quite high. As seen from the graphs in Figures
2-a and b and 3-a and b, the local maximum,
even if it exists, is sometimes prone to be
skipped over, i. E., the solution of equations (24)
and (25) is not found. This perhaps was the
problem encountered by Hosking and Wallis
(1987) when the solution was not found in too
many of their cases. In this study, a little labori-
ous but more reliable approach involving two
steps was used. First, a feasible range for a wide

ranging set of parameters of a and b was marked.

In the second stage, solution set was refined
using the bisection method.

2.6 Entropy Estimator
The entropy estimation equations of GPD2

are given as
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E|In l—a?lﬂz—a (26)
xi/b
E{l—axi/b}= 1—1a (27)

For a finite data set equations (26) and (27) are
similar to equations (24) and (25) respectively.

3. EXPERIMENTAL DESIGN

3.1 Monte Carlo Simulations
The inverse of equation (1) is

b
x(F)z(;)(l—F"),a# 0 (28)

and that of equation (2) is

x=-bln(l- F),a=0 (29)

where x (F) denotes the quantile of the cumula-
tive probability P or 1 - F(x).

To assess the performance of the parameter
estimation methods outlined above, Monte Carlo
sampling experiments were conducted. Eight
GPD2 population cases, listed in Table 1, were
considered for eight values of the coefficient of
variation (CV). These CV values are not ex-
haustive but do span the range normally en-
countered in hydrology and environmental and
water resources. For each population case, 1000
random samples of size 10, 20, 50, 100, 200,
and 500 were generated, and then parameters
and quantiles were estimated.
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Figure 2a. Variation of log-likelihood function with parameter a: a > 0.
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Figure 2b. Variation of log-likelihood function with parameter b: a > 0.
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Table 1 GPD2 Population Cases Considered in Sampling Experiment@u=1)

Parameter
Pu;}iilztzion Y.
a b
casgl 0.75 0.389 1.389
case 2 0.80 0.281 1.281
" case 3 0.90 0.117 1.117
case 4 0.95 0.054 1.054
case 5 1.25 -0.180 0.820
case 6 1.50 -0.278 0.722
case 7 2.00 -0.375 0.625
case 8 B 2.50 -0.420 0.580
3.2 Performance Indices . N 2)03
The performance of parametef estimators was Sx) = ﬁlg 1[2 T EG )} ] (34)

evaluated by using the following performance

indices:
Standardized bias,
Buas - E8=x (30)
X

Standard Error,

SE = S (31

X

Root Mean Square Error,

5105
E|(%- x) (32)

where X is an estimate of x (parameter or quan-
tile), EfX] denotes statistical expectation, and
S(X) denotes standard deviation of the respec-
tive random variable. E(X) and S(x} were calcu-
lated as

N
E(E)=~— X &, (33)

X
Nz' 1

where the summations are over N estimates of x
and N is the number of random samples used in
estimation (N = 1000 here). The RMSE can also
be expressed as

05
N-1
RMSE = {Tsm BIASZ} (35)

These indices were used to measure the vari-
ability of parameter and quantile estimates for
each simulation. Although they were used to
determine the overall "best" parameter estima-
tion method, our particular interest lies in the
bias and variability of estimates of quantiles in
the extreme tails of the distribution (P = 0.99,
0.999) when the estimates are based on small
samples (N £ 50).

Due to the limited number of random number
of samples used, the results are not expected to
reproduce the true values of BIAS, SE and
RMSE, but they do provide a means of compar-
ing the performance of estimation methods used.
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3.3 Robustness

The primary objective of this study is to iden-
tify a robust estimator for the GPD2. Kuczera
(1982a, 1982b) defined a robust estimator as the
one that is resistant and efficient over a wide
range of population fluctuations. If an estimator
performs steadily without undue deterioration in
RMSE and BIAS, then it can be expected to
perform better than other competing estimators
under population conditions different from those
on which conclusions were based. Two criteria for
identifying a resistant estimator are mini-max and
minimum average RMSE (Kuczera, 1982b). Based
on the minimum criterion, the preferred estimator
is the one whose maximum RMSE for all popula-
tion cases is minimum. The minimum average
criterion is to select the estimator whose RMSE
average over the test cases is minimum.

4. RESULTS AND DISCUSSION

The performance of a parameter estimator
depends on (1) sample size, N, (2) population
coefficient of variance, CV, (3) distribution pa-
rameter, and (4) the probability of exceedance or
the value of the variable exceeded, called quan-
tile. The sample sizes included were 10, 20, 50,
100, 200, and 500; and the coefficients of varia-
tion (CV) for each sample size were 0.75, 0.8,
0.9, 0.95, 1.25, 1.5, 2.0, and 2.5. These CV val-
ues cover practically most variables of interest
in hydrology and environmental and water re-
sources. Most observed data record lengths are
within the ranges of sample sizes considered.
The probabilities of non-exceedance considered
were 0.8, 0.9, 0.95, 0.99, and 0.999. The results
of the GPD2 parameter estimation are summa-
rized in Tables 2-5. It should be remarked that
the results of the two modifications of the
method of regular moments (RME) presented
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earlier were inferior to those of RME, so for
economy of space they were not included in the
final comparison. Also, MLE and ENT pro-
duced identical results and were therefore
clubbed together. Similarly, PWM and MLM
were identical in their performance and clubbed
together for purposes of comparison.

4.1 BIAS in Parameter Estimates

The results of parameter bias are summarized
in Table 2. PWM and MLM performed in a su-
perior manner for both parameters a and b for
sample sizes and all values of CV. RME pro-
duced the highest bias in parameter a as well as
for CV 2 0.95, followed by MLE and ENT,
regardless of the sample size, but the reverse
was true for CV < 0.95 and N > 50. As the sam-
ple size increased beyond 100, the bias in
parameters a and b produced by RME, ENT and
MLE was not greatly more than that of PWM
and MLM if CV was less than 0.95. For CV 2
0.95 and N > 200, MLE, ENT, MLM and PWM
became comparable. Thus, in terms of bias, it
can be concluded that PWM and MLM are the
preferred method. For N > 100, any method
would be acceptable for CV < 0.95, but for CV
> 2.0, the sample size would have to be larger
than 500 for RME and greater than 200 for ENT
and MLE.

4.2 RMSE in Parameter Estimates

The results of RMSE in parameters are sum-
marized in Table 3. In general, the RSME of a
method varied with the parameter to be esti-
mated, the sample size and the coefficient of
variation.

In terms of RMSE of parameter a, no method
performed uniformly better. If CV < 0.95 and N
= 20, RME produced the least RMSE. As the
value of CV increased, PWM and MLM per-
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Table 2
SAMPLE SIZE METHOD Bias in Shape Parameter (a)
CVmm=> (.75) {.80) (.90Y (.95) (1.25) (1.5) 2.0) (2.5)
10 RME .393 .5%7 1.567 3.563 1.481 1.122 .944 . 925
PWM & MLM .276 423 1.179 2.681 1.045 .780 .636 .639
MLE & ENT .363 .544 1.456 3.239 1.22%6 .803 .749 .750
20 RME .162 .247 .770 1.799 .898 .724 .646 .649
PWM & MLM .130 .206 .609 1.344 .563 .431 .360 .368
MLE & ENT 171 .265 .752 1.624 . 660 .499 .424 .432
50 RME .057 .103 L2927 .734 477 .414 .415 .426
PWM & MLM .048 .095 .234 .551 .248 .186 171 .170
MLE & ENT L0863 L 122 .289 .666 .291 .215 .201 .199
100 RME .030 .042 .151 .370 .282 .282 .303 .322
PWM & MLM .028 .037 112 .268 .119 .099 .093 .094
MLE & ENT .037 .047 .138 .323 .140 .115 .110 111
200 RME .01% .020 .075 191 .168 .187 .228 .247
PWM & MLM .014 .016 .054 .140 .05% .048 .052 .051
MLE & ENT .018 021 .067 .169 .069 .056 .061 .060
500 RME .009 .010 .023 .078 .086 L1111 .159 .184
PWM & MLM .009% .009 .012 .053 .026 .024 .023 .026
MLE & ENT 012 .012 .015 064 .030 .027 .028 .030
Bias in Scale Parameter (b)
10 RME .142 .145% 174 .191 .285 .366 . 485 .553
PWM & MLM .108 116 L1358 .147 .181 .213 .256 .286
MLE & ENT .142 .148 .166 177 .212 .247 .301 .336
20 RME .062 .068 .080 .087 179 . 240 .338 .391
PWM & MLM .054 .060 .073 .074 .100 .113 .135 .148
MLE & ENT .071 077 .091 .090 117 L1311 .15¢9 .174
50 RME .021 .029 .034 .040 .0%4 . 145 .218 274
PWM & MLM .019 .027 .028 .031 .041 L0350 .056 .065
LE & ENT .025 L0353 .034 .037 .049 .058 .066 .076
100 RME 011 .011 .018 .019 .058 .0%¢9 .168 .213
PWM & MLM 011 .010 .014 .014 .021 .026 .033 .036
MLE & ENT .014 .013 .017 .017 .025% .030 .039 .042
200 RME .0G6 .005 .008 L0112 .033 .065 .126 .165
PWM & MLM .006 .004 .006 .008 .009 011 .016 017
MLE & ENT .008 .005% . 007 .010 L0111 .013 .019 .020
500 RME .04 .002 .004 .004 .018 .041 .090 .126
PWM & MLM .004 .002 .002 .003 .00% .007 .007 .009
MLE & ENT .005 .003 .003 .003 .006 .008 .009 .010
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Table 3
SAMPLE SIZE METHOD RMSE in Shape Parameter(a)
CVmmw> (.75) (.80) (.90) "(.95) (1.25) (1.5) (2.0) (2.5)
10 RME 1.481 1.812 4.131 .393 2.462 1.676 1.253 1.182

8
PWM & MLM 1.349 1.757 4.060 8.439 2.490 1.654 1.201 1.124
MLE & ENT 1.589 2.032 561 9.328 2.695 1.774 1.303 1.218

F-S

20 RME .818 1.041 2.318 4.813 1.513 1.043 .829 .799%
PWM & MLM .878 1.153 2.614 5.422 1.632 1.067 .793 .739
MLE & ENT 1.034 1.333 2.936 5.994 1.766 1.144 .861 .800

50 RME . 467 .580 1.272 2.738 .900 .638 .537 .518

PWM & MLM .533 .683 1.520 3.231 .971 .648 .491 .451

MLE & ENT .627 .70 1.707 3.571 1.051 .695 .533 .488

100 RME .319 .395 .868 1.861 .637 .465 .402 .394
PWM & MLM .370 .474 1.058 2.233 .672 .450 .357 .324

MLE & ENT .436 .548 1.189 2.468 .727 .483 .387 .351

200 RME .220 .275 .597 1.288 .468 .349 .311 .307
PWM & MLM .258 .335 .734 1.550 .472 .324 .262 .240

MLE & ENT .304 .387 .825 1.714 .511 .347 .284 .260

500 RME .138 .172 .370 .808 .323 .248 .230 .232
PWM & MLM L1863 .211 .458 .975 .295 .206 .174 .163

MLE & ENT .192 .244 .514 1.078 .319 .221 .188 .177

RMSE in Scale Parameter (b)

10 RME .617 .594 .612 .554 .652 .721 .881 1.032
PWM & MLM .564 .570 .593 .592 .626 .648 . 689 L7112
MLE & ENT .664 .659 .666 .654 .678 .635 .747 L772
20 RME .366 .356 .366 .358 .398 .452 .564 .655
PWM & MLM .373 .372 .388 .380 .397 .409 .424 .438
MLE & ENT . 440 .430 .436 .420 .430 .439 .460 .474
50 RME .212 .208 .205 .208 .232 .271 .335 .409
PWM & MLM .224 .224 .223 .226 .233 .244 .244 .253
MLE & ENT .264 .259 .250 .250 .252 .262 .265 .274
100 RME .146 .143 .143 .144 .161 .184 .244 .292
PWM & MLM .156 .155 .157 .158 .162 .162 .170 .172
MLE & ENT .184 .178 .176 .175 .175 .174 .185 .187
200 RME .101 .100 .098 .100 .114 .131 .176 .215
PWM & MLM .109 .109 .108 -109 .112 .115 ) .122
MLE & ENT .128 .127 .122 .120 .122 .123 .127 .132
500 RME .064 .063 .062 .062 .075 .090 .123 .154
PWM & MLM .069 .069 .068 .0868 .070 .072 .076 .077

MLE & ENT .081 .079 .077 .075 L0786 .077 .082 .083
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Table 4
Bias in quantiles

PROBABILITY OF NON-EXCEEDANCE = .800
n  METHOD CV--> (.75) (.80) (.90) (.95) (1.25) (1.5) (2.0) (2.5)
10 RME -.028 -.026 -.017 =~-.006 .026 .060 .120  .145
PWM & MIM  ~-.031 -.032 -.030 =-.021 =-.017 ~-.009 .012  .013
MLE & ENT -.217 -.193 -.190 -.168 =-.099 -.065 ~-.005 .051
20  RME -.013 -.010 ~-.004 -.001 .027 .050 .093%  .118
PWM & MLM  -.016 -.015 -.012 -.010 =-.006 =-.007 .001 ~-.003
MLE & ENT -.116 =-.113 -.099 -.094 -.093 -.065 ~-.038  .022
50 RME -.007 -.003 -.001 .00l .016 .038 .069 .098
PWM & MIM -.008 ~-.005 ~.004 -.004 -.004 -.001 -.005 =-.004
MLE & ENT -.046 -.036 ~.043 -.042 -.03% ~-.052 -.028 -.022
100 RME -.003 -.003 .000 -.001 .012 .027 .061  .081
PWM & MLM  -.004 -.004 -.002 -.003 ~-.001 ~-.001 .000 ~.002
MLE & ENT -.020 =-.023 -.024 =-.022 =-.027 =-.026 =~.032 -.017
200 RME -.001 -.002 ~-.00% .001  .006 .0l18 .045  .065
PWM & MLM -.001 -.003 -.002 .000 -.002 ~-.002 =-.002 -.004
MLE & ENT -.011 -.012 -.011 ~.011 ~.014 =-.018 -.019 ~-.013
500 RME .006 -.001 .00l .000 .004  .012  .034  .051
PWM & MLM .000 -.001  .000 ~-.001 .000  .000 =-.001 ~-.002
MLE & ENT =-.003 -.004 -.008 -.004 -.005 -.005 =-.007 =-.006

PROBABILITY OF NON-EXCEEDANCE = .9%00
n  METHOD CV--> (.75) (.80) (.90) (.95) (1.25) (1.5) (2.0) (2.5)
10 RME ~.044 -.050 -.054 -.048 =-.046 =-.031 .004 .0l4
PWM & MLM -.038 -.046 =-.052 -.047 ~.059 -.060 =-.0S0 -.059
MLE & ENT .233  .206 .200 .177 .103 .066  .005 ~.052
20 RME -.023 -.023 -.026 -.026 =-.022 -.016 .012 .0l6
PWM & MIM -.021 -.023 ~-.026 -.025 =-.031 -.038 -.037 -.048
MLE & ENT .125  .121  .104  .098  .09%7  .067  .039 -.023
50 RME -.010 -.010 -.010 -.011 -.013 =-.002 .010  .027
PWM & MLM  -.010 -.010 -.010 =-.011 -.016 -.016 =-.024 -.025
MLE & ENT .049  .03%  .045  .044  .041  .053  .028  .023
106 RME -.005 -.005 =-.005 -.006 -.005 -.001 .016 .025
PWM & MIM -.005 -.005 -.005 -.006 -.006 =-.009 -.010 ~.015
MLE & ENT .022  .024  .025 .023  .028  .027  .033 .018
200 RME -.002 ~-.003 -.003 -.002 =-.004 -.001 .011 .021
PWM & MLM  -.002 -.003 -.003 -.002 -.004 -.006 ~.008 -.010
MLE & ENT .12 .013  .012  .012  .014 .018 .019  .0l4
500 RME -.001 -.001 .000 -.001 =-.002 .000 .00%  .018
PWM & MLM  -.001 -.002 .000 -.001 =-.001 =.002 -.004 ~-.005
MLE & ENT .003  .004 .008  .005  .005  .005 _ .007 _ .006

PROBABILITY OF NON-EXCEEDANCE = 950
n METHOD CV~--> (.75) (.80) {.90) (.95) (1.25) (1.5) {2.0) {2.5)
10 RME -.046 -.059 -.076 =-.076 -.104 -.107 ~.095 -.098
PWM & MLM -.029 =-.044 -.058 -.056 ~.083 -.092 =-.093 =-.109
MLE & ENT ~-.250 -.219 -.211 ~-.186 -.107 ~-.068 -.005  .053
20 RME -.024 -.028 ~.040 ~-.043 -.064 -.074 -.066 -.075
PWM & MM  -.016 -.021 -.030 -.031 ~.045 -.058 =-.063 -.081
MLE & ENT ~.134 -.129 =-.110 -.103 -.100 -.069 ~-.040  .023
50 RME -.011 ~-.013 -.016 =-.01% -.038 -.040 ~-.046 -.040
PWM & MIM  -.007 ~.010 -.012 -.014 =~.023 =-.025 -.037 -.041
MLE & ENT -.053 ~-.041 ~-.048 -.046 =-.042 -.055 -.020 ~-.023
100 RME -.006 ~-.007 -.009 -.011 ~-.021 -.028 ~.028 ~-.029
PWM & MLM  ~.004 -.005 -.006 =-.008 -.010 =-.014 -.017 ~-.024
MLE & ENT  -.023 -.026 -.027 -.024 -.029 -.027 -,034 -.018
200 RME -.002 -.004 -.005 -.004 ~-.014 =-.020 -.023 -.022
PWM & MLM ~.001 ~.003 -.004 -.003 -.006 ~.008 =-.012 -.015
MLE & ENT  ~.013 ~-.013 =-.013 =-.013 =-.0i5 ~-.019 -.020 -.014
500 RME -.001 -.002 =-.001 -.002 -.007 ~.011 =-,015 =-.015
PWM & MLM  -.001 -.002  .000 =-.002 ~-.002 -.003 -.005 ~-.007
MLE & ENT  ~-.003 -.004 -.009 ~.005 -.005 -.005 -.Q0B -,006
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Table 4(Conted.)

PROBABILITY OF NON-EXCEEDANCE = 990

n  METEOD CV--> (.75) (.80) (.90) (.95) (1.25) (1.5) (2.0) (2.5)

10 RME -.019 ~.047 -.090 =-.104 ~-.201 ~-.242 =-.277 ~-.303
PWM & MLM .033 .008 -.016 -.024 -.077 -.102 ~-.124 ~-.158
MLE & ENT .268 .234 .223 .195 .111 .071 .006 =-.054
20 RME -.009 -.021 ~-.051 -.063 ~-.137 ~-.184 -.218 ~-.252
PWM & MLM .020 .010 -.008 -.013 -.038 =-.062 ~-.079 -.111
MLE & ENT .143 .137 .116 .109 .104 .071 .041 -.024
50 RME -.004 -.012 =~.021 ~-.027 -.085 -.115 ~-.162 ~-.180
PWM & MLM .008 .000 -.003 -.005 ~-.021 -.023 -.044 -.051
MLE & ENT .057 .044 .050 .048 .044 .0s7 .030 .024
100 RME -.003 -.005 =~-.012 ~-.015 -.051 -.085 ~.,122 -.146
PWM & MLM .003 .002 .000 -.003 ~-.007 -.014 ~-.019 -.029
MLE & ENT .025 .028 .028 .025 .030 .028 .035 .018
200 RME -.001 -.003 -.007 =~.007 =-.032 -.059 -.098 -.119
PWM & MLM .002 .001 -.001 -.001 ~-.004 -.006 -.012 ~-.017
MLE & ENT .013 .014 .013 .013 .015 .020 .020 .014
500 RME -.001 -.002 -.00F1 ~.004 -.016 -.036 -.072 -.091
PWM & MLM .000 .000 .062 -.001 -,002 =~.003 -.006 ~-.008
MLE & ENT .004 .004 .009 .005 .005 .005 .008 .006

- PROBABILITY OF NON-EXCEEDANCE = 999

n  METHOD CV-~> (.75) (.80) (.90) (.95) (1.25) (1.5) (2.0) (2.5)

10 RME .060 .021 -.047 ~.082 -.277 -.367 =-.454 ~.502

PWM & MLM .203 .182 .180 .160 .098 .063 .005 -.050

MLE & ENT -.287 ~-.249 -.235 ~-.205 ~,115 ~-.073 -.006 .055

20 RME .037 .021 -.027 -.049 -.195 -.291 ~-.378 -.437

PWM & MLM .108 .106 .094 .089 .090 .0863 .037 -.022

MLE & ENT -.154 -,146 -.122 ~.114 -.,108 -.073 -.042 .024

50 RME .015 .003 -.009 ~.019 -.,125 -,195 -.2%% -.342

PWM & MLM .043 .034 .041 .040 .038 .050 .027 .022

MLE & ENT -.061 -.047 -.053 -.051 ~-.045 -.058 ~-.030 -.024

100 RME .007 .004 -,006 -,011 -.075 -.148 -.236 -.289
PWM & MLM .019 .021 .023 .021 .026 .025 .032 .017

MLE & ENT -.027 -,029 -.030 -.026 =-.,031 -.029 -.035 -.019

200 RME .004 .002 -.004 -.005 -.047 ~-.104 -.19%4 -.242
PWM & MLM .010 .011 .01l .011 .013 .017 .018 .013

MLE & ENT ~-,014 ~-,015 ~-.014 =-.014 -.016 =~-.020 ~-.021 -.014

500 RME .000 .000 .0Q01 -.003 -.024 -.,065 -.146 -.194
PWM & MLM .003 .003 .008 .004 .005 .004 .007 .006

MLE & ENT -.004 -.005 -.010 =-.005 =~.005 -.005 -.008 ~.006
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Table

5

RMSE in guantiles

PROBABILITY OF NON-EXCEEDANCE = .800
n METHOD CV--> (.75) (.80) (.90) (.95) ¢1.25) (1.5) (2.0) (2.5)
10 RME .228 .247 .285 .302 .397 .466 -630 .789%
PWM & MLM .232 .251 .288 .303 .374 .401 .452 .474
MLE & ENT .829 .86% 1.038 1.062 1.358 1.560 1.730 1.902
20 RME .164 -180 .206 -215 271 .326 .429 -509
PWM & MLM .166 -181 .208 .216 .258 .282 .305 .315
MLE & ENT .521 -580 .668 .711 1.053 1.208 1.3%8 1.332
50 RME .105 .114 .130 .137 .170 .206 .257 .323
PWM & MLM .106 2115 .131 .138 .164 .180 .191 .199
MLE & ENT .283 -315 .397 .438 .653 .828 .917 .999
100 RME .074 -.082 .093 .098 .120 -137 .185 .219
PWM & MLM .074 -082 .093 .099 .118 .125 .136 .138
MLE & ENT .187 .219 .276 .301 .452 .554 .703 .724
200 RME .053 .058 .0865 .069 .084 .096 .127 .152
PWM & MLM L0853 .058 .066 .070 .083 .089 .094 .097
MLE & ENT .130 .151 .191 .210 .308 .392 -512 .527
500 RME .034 .036 .041 .043 .053 .060 .078 098
PWM & MLM .034 .037 .042 .043 .053 .05¢6 .060 .062
MLE & ENT .080 .095 .119 .131 .1381 .239 -314 -361
PROBABILITY OF NON-EXCEEDANCE = .900
n METHOD CV~--> (.75) (.80) (.90) (.95) (1.25) (1.5) (2.0) (2.5)
10 RME .211 .232 .275 .295 -398 .466 .617 -771
PWM & MLM .213 .234 -277 .296 .384 .419 .477 -504
MLE & ENT .888 -926 1.095 1.116 1.407 1.606 1.771 1.942
20 RME -145 -165 .196 .210 .277 .333 -430 .505
PWM & MLM .148 .168 .198 .211 .269 .302 .331 .343
MLE & ENT .559 -618 .705 .747 1.091 1.244 1.390 1.35%9
S0 RME .091 .102 .124 .133 177 .215 .264 .325
PWM & MLM .094 -104 .126 .134 174 .195 .213 .224
MLE & ENT .303 .335 -419 .460 -677 .852 .939 1.020
100 RME .063 .072 .087 .095 .126 .146 .191 .220
PWM & MLM .065 .074 .089 .096 .124 .138 .155 .158
MLE & ENT .200 .233 .292 .317 .468 .570 .719 .739
200 RME .045 .051 .062 .068 .08% .103 .132 .152
PWM & MLM .047 .052 .063 .068 .088 .099 .110 .114
MLE & ENT .139 .161 .202 .220 .319 .403 -524 .538
500 RME .028 .032 .03s .042 .056 .064 .079 .096
PWM & MLM .029 -033 .039 .042 .056 .063 .071 .075
MLE & ENT .086 .101 .125 .137 .198 .246 .322 .368
PROBABILITY OF NON-EXCEEDANCE = .950
n METHOD CV--> (.75) (.80) {.90) {.95) (1.28) (1.5) {2.0) {2.5)
10 RME .221 .242 .291 .314 .424 .492 . 630 .778
PWM & MLM .229 .251 .299 .324 -429 .475 -541 -578
MLE & ENT .952 .986 1.155 1.172 1.458 1.654 1.813 1.982
20 RME .150 .172 .208 .224 .304 .362 -453 -523
PWM & MLM .162 .183 .216 .233 .309 .352 .389 .403
MLE & ENT .589 -658 .743 -785 1.130 1.281 1.423 1.388
S0 RME .094 . 108 .132 .143 .200 .241 .289 .3486
PWM & MLM .103 .114 .140 .150 .204 .233 .259 .274
MLE & ENT .325 .357 .442 .484 .701 .878 .961 1.041
100 RME .065 .075 .Q%2 .102 .144 .168 -213 .239
PWM & MLM .072 .082 .099% .107 . 147 .167 -1%82 .197
MLE & ENT .15 .248 .308 .333 .485 -587 -736 . 754
200 RME .046 .052 .066 .073 .104 . 123 .152 .169
PWM & MLM .05%2 .058 .070 .077 .104 121 -141 -145
MLE & ENT .149 172 .213 .232 .331 -415 .537 . .549
500 RME .029 .033 .041 .045 .068 .078 .096 L1111
PWM & MLM .033 .037 .044 .048 .0867 .077 -091 .099
MLE & ENT .082 .107 .132 .144 .206 .253 .329 .376
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Table 5(Conted.)

PROBABILITY OF NON-EXCEEDANCE = 990

n  METHOD CV--> (.75) (.80) (.90) (.95) (1.25) (1.5) (2.0} (2.5)

PROBABILITY OF EXCEEDANCE = .990
n  METHOD “

10 RME .290 .311 .369 .398 .517 .586 .704 .836
PWM & MLM .362 .382 .448 .482 .630 L7112 .810 .877

MLE & ENT 1.021 1.050 1.218 1.232 1.510 1.703 1.856 2.024

20 RME .2086 .228 .273 .295 .402 .463 .545 .606
PWM & MLM .260 .285 .328 .351 .484 .555 .621 .632

MLE & ENT .642 .701 .784 .825 1.171 1.319 1.457 1.417

50 RME .131 .143 .181 .198 .285 .334 .383 .434
PWM & MLM .163 .177 .216 .233 .328 .385 .431 .462

MLE & ENT .348 .380 .466 .508 .726 .504 .984 1.063

160 RME .092 .103 .128 .143 .215 .249 .2%9 .324
PWM & MLM .114 .128 .154 .166 .236 .278 .332 .342

MLE & ENT .230 .264 .324 .350 .502 .605 .754 .770

200 RME .0686 073 .092 .103 .161 .193 .231 .248
PWM & MLM .081 .0%0 L1098 .119 .168 .204 .249 .257

MLE & ENT .160 .183 .224 .243 .343 .428 .549 .561

500 RME .042 .04¢6 .057 .064 .112 .135 .163 .181
PWM & MLM .051 .058 .069 .075 .107 .129 .162 .179

MLE & ENT .099 .114 .139 .151 .213 .261 .337 .384

PROBABILITY OF NON-EXCEEDANCE = .999

n METHOD CV--> (.75) (.80) {.90) (.95) (1.25) (1.5) (2.0) (2.5)

10 RME .459 .481 .550 .576 L6717 .736 .825 .934
PWM & MLM .773 .816 .984 1.010 1.311 1.514 1.690 1.863
MLE & ENT 1.095 1.119 1,285 1.295 1.565 1.754 1.800 2.066
20 RME .321 .354 .414 .443 .575 .626 .690 .738
PWM & MLM .486 .545 .633 .676 1.016 1.173 1.327 1.304
MLE & ENT .689 .747 .827 .867 1.213 1.358 1.492 1.446
50 RME .185 .215 277 .311 .440 .491 .531 .578
PWM & MLM .264 .295 .377 .417 .631 .804 .896 .979
MLE & ENT .374 .405 492 .534 .753 .931 1.007 1.085
100 RME .135 .155 .19¢9 .225 .352 .39 .440 .465
PWM & MLM .174 .205 .262 .287 .436 .538 .686 .709
MLE & ENT .247 .281 .342 .367 .521 .623 112 .786
200 RME .095% .110 .143 .162 .273 .321 .361 .380
PWM & MLM 121 .142 .181 .200 .298 .380 .500 .516
MLE & ENT 171 .195 237 .256 .355 .441 .563 .573
500 RME .060 .069 .090 .102 .198 .241 .276 .301
PWM & MLM .075 .089 .113 .124 .185 .232 .307 .353

MLE & ENT .106 .122 .147 .159 .221 .268 .345 .392




Water Engineering Research, Vol. 4, No. 3, 2003

formed better for N > 200; the performance of
ENT and MLE was not greatly inferior.

In terms of RMSE in parameter b, PWM and
MLM performed in a uniformly superior manner
for CV > 0.95 and for N > 100. For CV £ 0.95
and N > 20, RMSE produced by RME was the
smallest of all the methods. However, overall all
methods were somewhat comparable. Thus, one
concludes that PWM and MLM are the pre-
ferred methods in terms of RMSE of parameters
a and b for large values of CV and small sample
sizes. For smaller values of CV and large sam-
ple sizes, RME would be the preferred method.

4.3 BIAS in Quantiles Estimates

The results of bias in quantile estimation for
different probabilities of non-exceedance (P) are
summarized in Table 4. Overall, PWM and
MLM performed the best in terms of quantile
bias for a range of values of the sample size, CV
and the probability of non-exceedance (P). The
next best method was RME, followed by MLE
and ENT. In general, the quantile bias increased
with increasing CV and increasing P but de-
creased with increasing sample size. For large-
sample sizes, N > 200, the quantile bias was
small in all cases, regardless of the method. For
N = 20, PWM and MLM exhibited uniformly
lower bias for all P=s, sample sizes and CV=s.
Thus, PWM or MLM would be the preferred
method. If the sample size is more than 20 and
CV < 0.95, RME yielded small bias and would
therefore be acceptable for practical purposes.
For larger values of CV, the sample size would
have to be much larger, say, greater than 200.
ENT and MLE would be acceptable for sample
size greater than 200 if P was less than 0.95 and
CV was less than 2.5,
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4.4 RMSE in Quantiles Estimates

The values of RMSE for different quantiles
estimated by GPD2 are summarized in Table S.
RMSE of a given quantile for a given method
varied with the sample size and the coefficient
of variation. In general, for a given quantile,
RMSE increased with CV, regardless of the
sample size; of course, it decreased with in-
creasing sample size. Furthermore, RMSE in-
creased with increasing quantile for the same
value of CV and sample size.

For P (the probability of non-exceedance) >
0.99, RME produced the least the least value of
RMSE regardless of the sample size and the
value of CV. The second lowest value of RMSE
was produced by MLM and PWN and the high-
est value was produced by MLE and ENT.
However, the reverse was true for P < 0.9. For
farge sample sizes N 2 200, RME became com-
parable to MLM and PWM for all values of CV
and P. MLE and ENT did not perform in a com-
parable manner. Thus, it is concluded that for
large floods and higher CVs, RME would be the
preferred method, whereas, for smaller floods
and lower Cvs, MLM and PWM would also be
comparable to RME.

5. CONCLUDING REMARKS

The following conclusions are drawn from
this study: PWM and MLM performed better
than RME, ENT and MLE in general. In terms
of parameter bias, PWM and MLM were uni-
formly better than ENT and MLE. This was also
true of the methods for RMSE. In terms of qua-
nile bias, PWM and MLM performed uniformly
better. In terms of RMSE, RME performed bet-
ter for large values of P and CV than did PWM
and MLM and was the preferred method. How-
ever. for smaller CVs and low values of P. PWM
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and MLM were comparable.
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