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Inter- and Intra-Block Estimators under an Arbitrary

Convex Loss Function
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ABSTRACT

The combined estimator of inter- and intra-block estimators in incomplete block
designs can be expressed as a weighted average of two location estimators. The weight
should be between 0 and 1. However, the negative variance component estimate could
result in the weight being negative or larger than 1. In this paper, we show that if
two location estimators have symmetric unimodal distributions, truncating the weight
to 0 or 1 accordingly improves the combined estimator under an arbitrary convex loss

function.

1. Main Results

It has been known that the combined estimator of inter- and intrablock estimators can
be expressed as a weighted average of two location estimators{(for example, see Khatri
and Shah, 1975). Bhattacharaya(1983) pointed out that the weight could become negative
in many experimental situations.

For a moment, consider a simple location problem. Suppose we have a random variable
Y with density function fs(y) with mean 6. Then, the density function fe will be called
symmetric if fo(y)=s(]y—6]) and unimodal if f is nonincreasing function of |y—#6|.

Consider estimators of the form:

b=¢(YDNY

and
br=max{0,4(|Y}Y.
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For the Stein estimator, Stein(1966) and Lehmann(1983, page 302) showed that @
is better than & under the quadratic loss when the distribution of Y is normal. Berger
and Bock (1976) extended the above result to the symmetric unimodal distribution. This
result could be extended to an arbitrary convex loss. We will consider the symmetric
loss function only, since it measures the distance between the estimator and the true
parameter value.

Theorem 1. If ¥ has a symmetric unimodal distribution, then

R@, 6)>R(6+,0) for all 6=R,
where R(8,6)=FE L(@—6) and L is an arbitrary convex loss function.

Proof. See the Appendix. 7

Theorem 1 could be extended easily to the multivariate location estimator using the
co-ordinatewise concepts used in Berger and Bock’s 1976 paper. These concepts concern
the properties of each co-ordinate holding other co-orinates fixed. For example, the
co-ordinatewise symmetric distribution means that the density function of one coordinate
is symmetric holding other co-ordinates fixed.

Let Z=Y~c¢ and 6*=6—c for some constant ¢. Then Z has a symmetric unimodal
distribution with mean 6*, From Theorem 1, it can be shown that

R@UZ)Z+c, O)=R{max{0,6(|Z])}Z+c,6) for all =R,
since L(¢(|Z)Z~0*y=L($(|Z|)Z+c—0).

Suppose we have another random variable X which has a symmetric unimodal distrib-
ution with mean @ and is independent of Y. The distribution of X is not necessarily
the same as that of Y. Using the same arguments conditioning on X, we can show that

R(6°, 6)=>R (6, 6) for all 6=R,
where §c=¢ (| Y-XD)(Y-X)+X
and

65=max{0,¢(| Y- XD} (Y =X) + X.

For simplicity we will use ¢ instead of ¢(]Y—X]). Note that

b=(1-¢)(X-V)+Y
and
s =max {0, 1-¢} (X-Y)+Y
=min{l, ¢} (Y-X) + X,
Since our arguments are symmetric with respect to X and Y, we can show that
R(b:, O)>R (b, 6) for all 6=R
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by applying the same arguments conditioning on Y.

Theorem 2. When X and Y have symmetric unimodal distributions with mean 6, then
under an arbitrary convex loss, we have

R(b, O)>R(6z, 6) for all 6=R,

where fg=min{1, max{0, ¢}}(Y-X)+X.

Proof. First show R(@, 6)>R(f:, 6) conditioning on X. Then show R 6)>
R(#z, 6) conditioning on Y.

2. A Modification of the Combined Estimator for Inter- and Intra-Block

Estimators,

Following the notations of Bhattacharaya(1983), we can express the recovery of inter-
and intra-block information as follows: Suppose we have independent random variables
X, Y,S, Tand W,, i=1,2,--+, g such that

X~N@®, %),
Y~N(@, o3,
S/ok ~ Am
T/oj ~ Xm
and W/ (aiox+Bio¢) ~xi for i=1,2, -, g,
where a’s and 8/’s are known constants and ¢} and ¢} are unknown parameters. Let
Wo=(Y—X)2 Interpretations of X,Y,S, T and W/s are as follows:

X and Y are intra-block and inter-block estimators of a given cannonical contrast which
is estimable form both intra-block and inter-block analysis. W;'s are squared differences
between intra-block and inter-block estimators of other cannonical contrasts. S and T are
intra-block and inter-block sum of squares.

Then, the combined estimator of intra- and inter-block estimators is

be=¢(Y-X)+X,
where ¢ is a measurable functions of S, 7, W;,i=0,1,2,+-,¢. Since our arguments in
the previous section do not depend on the values of ¢} and ¢, using the same arguments

conditioning on S, T, W,, W, +--, W,, we can show that under an arbitrary convex loss

function,

R(6. 6)=>R 5, 6) @1
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for all values of 6, ¢% and 0%,
where 85=min {1, max{0, ¢}}(Y—X)+X and ¢ is as above.

Note that S, T and W/s are even location free statistics and therefore, ¢ is also.
§c and Bz are odd location statistics. In this case, Seely and Hogg(1982) showed that é¢
and s are unbiased if within and between block error distributions are symmetric. So
the risk under the quadratic loss function is a multiple of variance. Shah(1971) and
Bhattacharaya (1983) investigated the variance of truncated estimator when the lower
limit of variance components ratio is known.

The proof in the previous section does not require any specific distribution for X, Y,
S, T and W.s but does require independence of these random variable. These random
variables are obtained by linear transformations and are uncorrelated. However, the
normality assumption is necessary to hold independence of these random variables.
Therefore, it might be interesting to prove the inequality (2.1) using properties of even
location free statistics and odd location statistics and the uncorrelatedness of X,Y,S, T

and W.'s without assuming independence.

Appendix

Proof of Theorem.
Without loss of generality, assume 6>0. Then,
R, 6)—R (b, 0)
=[solL G- —LO)} /o () dy.
By transforming y to —Z when y<( and then transforming Z to y, the equation above

becomes

§10 LLigy=0)—LOVSo(5)dy
+{4 (L(=gy—6) —L(O))So(—3)dy

>, (LGy—0=LO) o) —f(=))dy,
since L(—¢y—6)—L(B)Z—L(qu—ﬁ)—%L(ﬁ) by the convexity of L, Note that since >0,
L(gy—0)>L(6) when ¢v <0

and
fe(3)=>=fe(—y) when y>0.



Therefore, we have the desired result. 7
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