• 제목/요약/키워드: Weighted Support

Search Result 210, Processing Time 0.023 seconds

Weighted LS-SVM Regression for Right Censored Data

  • Kim, Dae-Hak;Jeong, Hyeong-Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.765-776
    • /
    • 2006
  • In this paper we propose an estimation method on the regression model with randomly censored observations of the training data set. The weighted least squares support vector machine regression is applied for the regression function estimation by incorporating the weights assessed upon each observation in the optimization problem. Numerical examples are given to show the performance of the proposed estimation method.

Fuzzy c-Regression Using Weighted LS-SVM

  • Hwang, Chang-Ha
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.161-169
    • /
    • 2005
  • In this paper we propose a fuzzy c-regression model based on weighted least squares support vector machine(LS-SVM), which can be used to detect outliers in the switching regression model while preserving simultaneous yielding the estimates of outputs together with a fuzzy c-partitions of data. It can be applied to the nonlinear regression which does not have an explicit form of the regression function. We illustrate the new algorithm with examples which indicate how it can be used to detect outliers and fit the mixed data to the nonlinear regression models.

  • PDF

Frequent Pattern Mining By using a Completeness for BigData (빅데이터에 대한 Completeness를 이용한 빈발 패턴 마이닝)

  • Park, In-Kyu
    • Journal of Korea Game Society
    • /
    • v.18 no.2
    • /
    • pp.121-130
    • /
    • 2018
  • Most of those studies use frequency, the number of times a pattern appears in a transaction database, as the key measure for pattern interestingness. It prerequisites that any interesting pattern should occupy a maximum portion of the transactions it appears. But in our real world scenarios the completeness of any pattern is more likely to become various in transactions. Hence, we should also consider the problem of finding the qualified patterns with the significant values of the weighted support by completeness in order to reduce the loss of information within any pattern in transaction. In these pattern recommendation applications, patterns with higher completeness may lead to higher recall while patterns with higher completeness may lead to higher recall while patterns with higher frequency lead to higher precision. In this paper, we propose a measure of weighted support and completeness and an algorithm WSCFPM(weigted support and completeness frequent pattern mining). Our algorithm handles the invalidation of the monotone or anti-monotone property which does not hold on completeness. Extensive performance analysis show that our algorithm is very efficient and scalable for word pattern mining.

Implementation of a Web-Based Intelligent Decision Support System for Apartment Auction (아파트 경매를 위한 웹 기반의 지능형 의사결정지원 시스템 구현)

  • Na, Min-Yeong;Lee, Hyeon-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.11
    • /
    • pp.2863-2874
    • /
    • 1999
  • Apartment auction is a system that is used for the citizens to get a house. This paper deals with the implementation of a web-based intelligent decision support system using OLAP technique and data mining technique for auction decision support. The implemented decision support system is working on a real auction database and is mainly composed of OLAP Knowledge Extractor based on data warehouse and Auction Data Miner based on data mining methodology. OLAP Knowledge Extractor extracts required knowledge and visualizes it from auction database. The OLAP technique uses fact, dimension, and hierarchies to provide the result of data analysis by menas of roll-up, drill-down, slicing, dicing, and pivoting. Auction Data Miner predicts a successful bid price by means of applying classification to auction database. The Miner is based on the lazy model-based classification algorithm and applies the concepts such as decision fields, dynamic domain information, and field weighted function to this algorithm and applies the concepts such as decision fields, dynamic domain information, and field weighted function to this algorithm to reflect the characteristics of auction database.

  • PDF

Weak laws of large numbers for weighted sums of Banach space valued fuzzy random variables

  • Kim, Yun Kyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.215-223
    • /
    • 2013
  • In this paper, we present some results on weak laws of large numbers for weighted sums of fuzzy random variables taking values in the space of normal and upper-semicontinuous fuzzy sets with compact support in a separable real Banach space. First, we give weak laws of large numbers for weighted sums of strong-compactly uniformly integrable fuzzy random variables. Then, we consider the case that the weighted averages of expectations of fuzzy random variables converge. Finally, weak laws of large numbers for weighted sums of strongly tight or identically distributed fuzzy random variables are obtained as corollaries.

A Study of RMR in Tunnel with Risk Factor of Collapse (터널 붕괴 위험도에 따른 RMR 연구)

  • Jang, Hyong-Doo;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.333-340
    • /
    • 2011
  • RMR is most strongly adopted rock classification method to scheme support system in domestic tunnel. However the RMR, which is based on geological survey during design stage of tunnel, can't present the real ground accurately. In this study, authors suggested Weighted-RMR (W-RMR) which is considered weighted value of risk factors of collapse due to prevent collapse and roof falls during tunneling. According to the application of W-RMR to Bye-Gye tunnel, we could change support type flexibly by the risk factors on a face of tunnel.

Risk Classification of Vessel Navigation System using Correlation Weight of Marine Environment (해양 환경 요소 상관관계 가중치를 이용한 선박 항행 시스템의 위험도 분류)

  • Song, Byoung Ho;Bae, Sang Hyun
    • Journal of Integrative Natural Science
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 2011
  • Various algorithms and system development are being required to support the advanced decision making of navigation information support system because of a serious loss of lives and property accidents by officer's error like as carelessness and decision faults. Much of researchers have introduced the techniques about the systems, but they hardly consider environmental factors. In this paper, We collect the context information in order to assess the risk, which is considered the various factor of the sailing ship, then extract the features of knowledge context, which is to apply the weight of correlation coefficients among data in context information. We decide the risk after the extract features through the classification and prediction of context information, and compare the value accuracy of proposed method in order to compare efficiency of the weighted value with the non-weighted value. As a result of experience, we know that the method of weight properties effectively reflect the marine environment because the weight accurate better than the non-weighted.

Using weighted Support Vector Machine to address the imbalanced classes problem of Intrusion Detection System

  • Alabdallah, Alaeddin;Awad, Mohammed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5143-5158
    • /
    • 2018
  • Improving the intrusion detection system (IDS) is a pressing need for cyber security world. With the growth of computer networks, there are constantly daily new attacks. Machine Learning (ML) is one of the most important fields which have great contribution to address the intrusion detection issues. One of these issues relates to the imbalance of the diverse classes of network traffic. Accuracy paradox is a result of training ML algorithm with imbalanced classes. Most of the previous efforts concern improving the overall accuracy of these models which is truly important. However, even they improved the total accuracy of the system; it fell in the accuracy paradox. The seriousness of the threat caused by the minor classes and the pitfalls of the previous efforts to address this issue is the motive for this work. In this paper, we consolidated stratified sampling, cost function and weighted Support Vector Machine (WSVM) method to address the accuracy paradox of ID problem. This model achieved good results of total accuracy and superior results in the small classes like the User-To-Remote and Remote-To-Local attacks using the improved version of the benchmark dataset KDDCup99 which is called NSL-KDD.

Adaptive ridge procedure for L0-penalized weighted support vector machines

  • Kim, Kyoung Hee;Shin, Seung Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1271-1278
    • /
    • 2017
  • Although the $L_0$-penalty is the most natural choice to identify the sparsity structure of the model, it has not been widely used due to the computational bottleneck. Recently, the adaptive ridge procedure is developed to efficiently approximate a $L_q$-penalized problem to an iterative $L_2$-penalized one. In this article, we proposed to apply the adaptive ridge procedure to solve the $L_0$-penalized weighted support vector machine (WSVM) to facilitate the corresponding optimization. Our numerical investigation shows the advantageous performance of the $L_0$-penalized WSVM compared to the conventional WSVM with $L_2$ penalty for both simulated and real data sets.

Support Vector Quantile Regression with Weighted Quadratic Loss Function

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.183-191
    • /
    • 2010
  • Support vector quantile regression(SVQR) is capable of providing more complete description of the linear and nonlinear relationships among random variables. In this paper we propose an iterative reweighted least squares(IRWLS) procedure to solve the problem of SVQR with a weighted quadratic loss function. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of SVQR. Experimental results are then presented which illustrate the performance of the IRWLS procedure for SVQR.