Journal of Institute of Control, Robotics and Systems
/
v.15
no.4
/
pp.451-455
/
2009
This paper provides a comparison of global path planning method in single string by using pulled and pushed SOFM (Self-Organizing Feature Map) which is a method among a number of neural network. The self-organizing feature map uses a randomized small valued initial-weight-vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. On the other hand, the modified SOFM method in this research uses a predetermined initial weight vectors of the one dimensional string, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are move toward or reverse the input vector, by rising a pulled- or a pushed-SOFM. According to simulation results one can conclude that the modified neural networks in single string are useful tool for the global path planning problem of a mobile robot. In comparison of the number of iteration for converging to the solution the pushed-SOFM is more useful than the pulled-SOFM in global path planning for mobile robot.
Journal of Institute of Control, Robotics and Systems
/
v.11
no.2
/
pp.137-143
/
2005
Autonomous mobile robot has an ability to navigate using both map in known environment and sensors for detecting obstacles in unknown environment. In general, autonomous mobile robot navigates by global path planning on the basis of already made map and local path planning on the basis of various kinds of sensors to avoid abrupt obstacles. This paper provides a global path planning method using self-organizing feature map which is a method among a number of neural network. The self-organizing feature map uses a randomized small valued initial weight vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. On the other hand, the modified method in this research uses a predetermined initial weight vectors, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. According to simulation results one can conclude that the modified neural network is useful tool for the global path planning problem of a mobile robot.
Journal of the Korean Data and Information Science Society
/
v.17
no.4
/
pp.1151-1160
/
2006
The similarity weight, the pearson's correlation coefficient, which is used in the recommender system has a weak point that it cannot predict all of the prediction value. The similarity weight, the vector similarity, has a weak point of the high MAE although the prediction coverage using the vector similarity is higher than that using the pearson's correlation coefficient. The purpose of this study is to suggest how to raise the prediction coverage. Also, the MAE using the suggested method in this study was compared both with the MAE using the pearson's correlation coefficient and with the MAE using the vector similarity, so was the prediction coverage. As a result, it was found that the low of the MAE in the case of using the suggested method was higher than that using the pearson's correlation coefficient. However, it was also shown that it was lower than that using the vector similarity. In terms of the prediction coverage, when the suggested method was compared with two similarity weights as I mentioned above, it was found that its prediction coverage was higher than that pearson's correlation coefficient as well as vector similarity.
The maximum weight of single stock in mutual fund is limited by regulations to enforce diversification. Under incomplete information with added constraints on portfolio weights, enhanced performance had been reported in previous researches. We analyze a weight vector to examine the effects of additional constraints on the portfolio's performance by computing the Euclidean distance from the in-sample tangency portfolio, as opposed to previous researches which analyzed ex-post return only. Empirical experiment was performed on Mean-variance and Minimum-variance model with Fama French's 30 industry portfolio and 10 industry portfolio for the last 1,000 months from August 1932 to November 2015. We find that diversification-constrained portfolios have 7% to 26% smaller Euclidean distances with the benchmark portfolio compared to those of unconstrained portfolios and 3% to 11% greater Sharpe Ratio.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.11
no.6
/
pp.41-47
/
2011
This paper is concerned with the DW-MCMA(Dual Weight vector Modified Constant Modulus Algorithm) adaptive equalization algorithm using the dual weight vector in order to improve the convergence characteristic and residual inter-symbol interference which are used as the performance index for an adaptive equalizer. The equalizer is used to reduce the distortion caused by the inter-symbol interference on the wireless and the wired band-limited channel that connect the transmitting system and receiving system. The CMA is widely known as the representative algorithm for equalization. In order to transmitting the mass information with a high speed through the channels, a fast convergence speed in the equalizer performance that is able to minimize overhead needed for equalization is acquired. In this paper, By the computer simulation, we confirmed that the proposed DW-MCMA has the faster convergence speed and the smaller residual inter-symbol interference than the conventional CMA and MCMA.
The effects of random errors in array weight and sensor positions on the performance of a Linearly constrained linear sensor array is analyzed in a weight vector space. It is observed that a nonorthogonality exists between an optimum weight vector and the steering vector of an interference direction du e to random errors. A novel approach to improving the nulling performance by compensating for the nonorthogonality is proposed. Computer simulation results are presented.
Journal of information and communication convergence engineering
/
v.15
no.3
/
pp.137-142
/
2017
A general linearly constrained narrowband adaptive array is examined in the eigenvector space. The optimum weight vector in the eigenvector space is shown to have the same performance as in the standard coordinate system, except that the input signal correlation matrix and look direction steering vector are replaced with the eigenvalue matrix and transformed steering vector. It is observed that the variation in gain factor results in the variation in the distance between the constraint plane and the origin in the translated weight vector space such that the increase in gain factor decreased the distance from the constraint plane to the origin, thus affecting the nulling performance. Simulation results showed that the general linearly constrained adaptive array performed better at an optimal gain factor compared with the conventional linearly constrained adaptive array in a coherent signal environment and the former showed similar performance as the latter in a noncoherent signal environment.
The similarity weight, the pearson's correlation coefficient, which is used in the recommender system has a weak point that it cannot predict all of the prediction value. The similarity weight, the vector similarity, has a weak point of the high MAE although the prediction coverage using the vector similarity is higher than that using the pearson's correlation coefficient. The purpose of this study is to suggest how to raise the prediction coverage. Also, the MAE using the suggested method in this study was compared both with the MAE using the pearson's correlation coefficient and with the MAE using the vector similarity, so was the prediction coverage. As a result, it was found that the low of the MAE in the case of using the suggested method was higher than that using the pearson's correlation coefficient. However, it was also shown that it was lower than that using the vector similarity In terms of the prediction coverage, when the suggested method was compared with two similarity weights as I mentioned above, it was found that its prediction coverage was higher than that pearson's correlation coefficient as well as vector similarity.
We propose a extended vector space model by using ambiguous words and disambiguous words to improve the result of a Korean document classification method. In this paper we study the precision enhancement of vector space model and we propose a new axis that represents a weight value. Conventional classification methods without the weight value had some problems in vector comparison. We define a word which has same axis of the weight value as ambiguous word after calculating a mutual information value between a term and its classification field. We define a word which is disambiguous with ambiguous meaning as disambiguous word. We decide the strengthness of a disambiguous word among several words which is occurring ambiguous word and a same document. Finally, we proposed a new classification method based on extension of vector dimension with ambiguous and disambiguous words.
Kim, Sang-Kyun;Chang, Joon-Hyuk;Cho, Ki-Ho;Kim, Nam-Soo
The Journal of the Acoustical Society of Korea
/
v.28
no.5
/
pp.471-476
/
2009
In this paper, we apply a discriminative weight training to a support vector machine (SVM) based speech/music classification for the selectable mode vocoder (SMV) of 3GPP2. In our approach, the speech/music decision rule is expressed as the SVM discriminant function by incorporating optimally weighted features of the SMV based on a minimum classification error (MCE) method which is different from the previous work in that different weights are assigned to each the feature of SMV. The performance of the proposed approach is evaluated under various conditions and yields better results compared with the conventional scheme in the SVM.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.