• Title/Summary/Keyword: Weight vector

Search Result 513, Processing Time 0.022 seconds

The Comparison of Pulled- and Pushed-SOFM in Single String for Global Path Planning (전역경로계획을 위한 단경로 스트링에서 당기기와 밀어내기 SOFM을 이용한 방법의 비교)

  • Cha, Young-Youp;Kim, Gon-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.451-455
    • /
    • 2009
  • This paper provides a comparison of global path planning method in single string by using pulled and pushed SOFM (Self-Organizing Feature Map) which is a method among a number of neural network. The self-organizing feature map uses a randomized small valued initial-weight-vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. On the other hand, the modified SOFM method in this research uses a predetermined initial weight vectors of the one dimensional string, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are move toward or reverse the input vector, by rising a pulled- or a pushed-SOFM. According to simulation results one can conclude that the modified neural networks in single string are useful tool for the global path planning problem of a mobile robot. In comparison of the number of iteration for converging to the solution the pushed-SOFM is more useful than the pulled-SOFM in global path planning for mobile robot.

A Global Path Planning of Mobile Robot by Using Self-organizing Feature Map (Self-organizing Feature Map을 이용한 이동로봇의 전역 경로계획)

  • Kang Hyon-Gyu;Cha Young-Youp
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.137-143
    • /
    • 2005
  • Autonomous mobile robot has an ability to navigate using both map in known environment and sensors for detecting obstacles in unknown environment. In general, autonomous mobile robot navigates by global path planning on the basis of already made map and local path planning on the basis of various kinds of sensors to avoid abrupt obstacles. This paper provides a global path planning method using self-organizing feature map which is a method among a number of neural network. The self-organizing feature map uses a randomized small valued initial weight vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. On the other hand, the modified method in this research uses a predetermined initial weight vectors, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. According to simulation results one can conclude that the modified neural network is useful tool for the global path planning problem of a mobile robot.

On the Study of Perfect Coverage for Recommender System

  • Lee, Hee-Choon;Lee, Seok-Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1151-1160
    • /
    • 2006
  • The similarity weight, the pearson's correlation coefficient, which is used in the recommender system has a weak point that it cannot predict all of the prediction value. The similarity weight, the vector similarity, has a weak point of the high MAE although the prediction coverage using the vector similarity is higher than that using the pearson's correlation coefficient. The purpose of this study is to suggest how to raise the prediction coverage. Also, the MAE using the suggested method in this study was compared both with the MAE using the pearson's correlation coefficient and with the MAE using the vector similarity, so was the prediction coverage. As a result, it was found that the low of the MAE in the case of using the suggested method was higher than that using the pearson's correlation coefficient. However, it was also shown that it was lower than that using the vector similarity. In terms of the prediction coverage, when the suggested method was compared with two similarity weights as I mentioned above, it was found that its prediction coverage was higher than that pearson's correlation coefficient as well as vector similarity.

  • PDF

Weight Vector Analysis to Portfolio Performance with Diversification Constraints (비중 상한 제약조건에 따른 포트폴리오 성과에 대한 투자 비중 분석)

  • Park, Kyungchan;Kim, Hongseon;Kim, Seongmoon
    • Korean Management Science Review
    • /
    • v.33 no.4
    • /
    • pp.51-64
    • /
    • 2016
  • The maximum weight of single stock in mutual fund is limited by regulations to enforce diversification. Under incomplete information with added constraints on portfolio weights, enhanced performance had been reported in previous researches. We analyze a weight vector to examine the effects of additional constraints on the portfolio's performance by computing the Euclidean distance from the in-sample tangency portfolio, as opposed to previous researches which analyzed ex-post return only. Empirical experiment was performed on Mean-variance and Minimum-variance model with Fama French's 30 industry portfolio and 10 industry portfolio for the last 1,000 months from August 1932 to November 2015. We find that diversification-constrained portfolios have 7% to 26% smaller Euclidean distances with the benchmark portfolio compared to those of unconstrained portfolios and 3% to 11% greater Sharpe Ratio.

The Performance Improvement of MCMA Adaptive Equalization in 16-QAM Signal using Dual Weight Vector (이중 가중치 벡터를 이용한 16-QAM 신호의 MCMA 적응 등화 성능 개선)

  • Yoon, Jae-Sun;Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.41-47
    • /
    • 2011
  • This paper is concerned with the DW-MCMA(Dual Weight vector Modified Constant Modulus Algorithm) adaptive equalization algorithm using the dual weight vector in order to improve the convergence characteristic and residual inter-symbol interference which are used as the performance index for an adaptive equalizer. The equalizer is used to reduce the distortion caused by the inter-symbol interference on the wireless and the wired band-limited channel that connect the transmitting system and receiving system. The CMA is widely known as the representative algorithm for equalization. In order to transmitting the mass information with a high speed through the channels, a fast convergence speed in the equalizer performance that is able to minimize overhead needed for equalization is acquired. In this paper, By the computer simulation, we confirmed that the proposed DW-MCMA has the faster convergence speed and the smaller residual inter-symbol interference than the conventional CMA and MCMA.

A Novel Approach to Improving the Performance of Randomly Perturbed Sensor Arrays (불규칙하게 흔들리는 센서어레이의 성능향상을 위한 새로운 방법)

  • Chang, Byong-Kun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1E
    • /
    • pp.65-72
    • /
    • 1995
  • The effects of random errors in array weight and sensor positions on the performance of a Linearly constrained linear sensor array is analyzed in a weight vector space. It is observed that a nonorthogonality exists between an optimum weight vector and the steering vector of an interference direction du e to random errors. A novel approach to improving the nulling performance by compensating for the nonorthogonality is proposed. Computer simulation results are presented.

  • PDF

General Linearly Constrained Narrowband Adaptive Arrays in the Eigenvector Space

  • Chang, Byong Kun
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.3
    • /
    • pp.137-142
    • /
    • 2017
  • A general linearly constrained narrowband adaptive array is examined in the eigenvector space. The optimum weight vector in the eigenvector space is shown to have the same performance as in the standard coordinate system, except that the input signal correlation matrix and look direction steering vector are replaced with the eigenvalue matrix and transformed steering vector. It is observed that the variation in gain factor results in the variation in the distance between the constraint plane and the origin in the translated weight vector space such that the increase in gain factor decreased the distance from the constraint plane to the origin, thus affecting the nulling performance. Simulation results showed that the general linearly constrained adaptive array performed better at an optimal gain factor compared with the conventional linearly constrained adaptive array in a coherent signal environment and the former showed similar performance as the latter in a noncoherent signal environment.

A Study on the Maximizing Coverage for Recommender System

  • Lee, Hee-Choon;Lee, Seok-Jun;Park, Ji-Won;Kim, Chul-Seoung
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.119-128
    • /
    • 2006
  • The similarity weight, the pearson's correlation coefficient, which is used in the recommender system has a weak point that it cannot predict all of the prediction value. The similarity weight, the vector similarity, has a weak point of the high MAE although the prediction coverage using the vector similarity is higher than that using the pearson's correlation coefficient. The purpose of this study is to suggest how to raise the prediction coverage. Also, the MAE using the suggested method in this study was compared both with the MAE using the pearson's correlation coefficient and with the MAE using the vector similarity, so was the prediction coverage. As a result, it was found that the low of the MAE in the case of using the suggested method was higher than that using the pearson's correlation coefficient. However, it was also shown that it was lower than that using the vector similarity In terms of the prediction coverage, when the suggested method was compared with two similarity weights as I mentioned above, it was found that its prediction coverage was higher than that pearson's correlation coefficient as well as vector similarity.

  • PDF

Korean Document Classification Using Extended Vector Space Model (확장된 벡터 공간 모델을 이용한 한국어 문서 분류 방안)

  • Lee, Samuel Sang-Kon
    • The KIPS Transactions:PartB
    • /
    • v.18B no.2
    • /
    • pp.93-108
    • /
    • 2011
  • We propose a extended vector space model by using ambiguous words and disambiguous words to improve the result of a Korean document classification method. In this paper we study the precision enhancement of vector space model and we propose a new axis that represents a weight value. Conventional classification methods without the weight value had some problems in vector comparison. We define a word which has same axis of the weight value as ambiguous word after calculating a mutual information value between a term and its classification field. We define a word which is disambiguous with ambiguous meaning as disambiguous word. We decide the strengthness of a disambiguous word among several words which is occurring ambiguous word and a same document. Finally, we proposed a new classification method based on extension of vector dimension with ambiguous and disambiguous words.

Analysis and Implementation of Speech/Music Classification for 3GPP2 SMV Codec Employing SVM Based on Discriminative Weight Training (SMV코덱의 음성/음악 분류 성능 향상을 위한 최적화된 가중치를 적용한 입력벡터 기반의 SVM 구현)

  • Kim, Sang-Kyun;Chang, Joon-Hyuk;Cho, Ki-Ho;Kim, Nam-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.471-476
    • /
    • 2009
  • In this paper, we apply a discriminative weight training to a support vector machine (SVM) based speech/music classification for the selectable mode vocoder (SMV) of 3GPP2. In our approach, the speech/music decision rule is expressed as the SVM discriminant function by incorporating optimally weighted features of the SMV based on a minimum classification error (MCE) method which is different from the previous work in that different weights are assigned to each the feature of SMV. The performance of the proposed approach is evaluated under various conditions and yields better results compared with the conventional scheme in the SVM.