• Title/Summary/Keyword: Wedge model

Search Result 209, Processing Time 0.021 seconds

The Variation of PSF Induced Enlarged Wedged Fields (확장된 쐐기조사야에 의한 조직산란계수의 변화)

  • Lee, Jeong-Woo;Cho, Hwa-Seop;Park, Seong-Ryul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.10 no.1
    • /
    • pp.97-101
    • /
    • 1998
  • In recent days, although many kinds of beam modifiers are developing and using for clinical purposes in accordance with progressing medical engineering, physical wedges are preferred to use as a beam modifier by a lot of institutions until now because of cost, complexities of dosimetry and mechanical uncertainties. According to progressing technology, available field size of wedge is more enlarger than that of old model LINAC. Because field size dependence of wedged fields increases in new model LINAC, we was trying to know that how much different PSFs are in enlarged wedged fields compared with open fields. In small or middle size of fields($4{\times}4{\sim}15{\times}15cm$), there are only a few percents of PSF variation between open and wedged fields. But there are $2{\sim}8\%\;variations\;in\;relatively\;large\;fields(20{\times}20{\sim}30{\times}40cm)$.

  • PDF

Development of Range-Dependent Ray Model for Sonar Simulator (소나 시뮬레이터용 거리 종속 음선 모델 개발)

  • Jung, Young-Cheol;Lee, Keunhwa;Seong, Woojae;Kim, Hyoung-Rok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.163-173
    • /
    • 2014
  • Sound propagation algorithm for a sonar simulator is required to run in real-time and should be able to model the range and depth dependence of the Korean ocean environments. Ray model satisfies these requirements and we developed an algorithm for range-dependent ocean environments. In this algorithm, we considered depth-dependence of sound speed through rays based on a rectangular cell method and layer method. Range-dependence of sound speed was implemented based on a split-step method in the range direction. Eigen-ray is calculated through an interpolation of ray bundles and Gaussian interpolation function was used. The received time signal of sonar was simulated by Fourier transform of eigen-ray solution in the frequency domain. Finally, for the verification of proposed algorithm, we compared the results of transmission loss with other validated models such as BELLHOP, SNUPE, KRAKEN and OASES, for the Pekeris waveguide, wedge, and deep ocean environments. As a result, we obtained satisfactory agreements among them.

Computational analysis of pollutant dispersion in urban street canyons with tree planting influenced by building roof shapes

  • Bouarbi, Lakhdar;Abed, Bouabdellah;Bouzit, Mohamed
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.505-521
    • /
    • 2016
  • The objective of this study is to investigate numerically the effect of building roof shaps on wind flow and pollutant dispersion in a street canyon with one row of trees of pore volume, $P_{vol}=96%$. A three-dimensional computational fluid dynamics (CFD) model is used to evaluate air flow and pollutant dispersion within an urban street canyon using Reynolds-averaged Navier-Stokes (RANS) equations and the Explicit Algebraic Reynolds Stress Models (EARSM) based on k-${\varepsilon}$ turbulence model to close the equation system. The numerical model is performed with ANSYS-CFX code. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated by the wind tunnel experiment results. Having established this, the wind flow and pollutant dispersion in urban street canyons (with six roof shapes buildings) are simulated. The numerical simulation results agree reasonably with the wind tunnel data. The results obtained in this work, indicate that the flow in 3D domain is more complicated; this complexity is increased with the presence of trees and variability of the roof shapes. The results also indicated that the largest pollutant concentration level for two walls (leeward and windward wall) is observed with the upwind wedge-shaped roof. But the smallest pollutant concentration level is observed with the dome roof-shaped.

Development of minimum-salinity feedwater for reduction of unit production cost of reverse-osmosis desalination plants (역삼투 담수화 시설의 생산단가 절감을 위한 저 염도 지하 기수 개발)

  • Park, Namsik;Jang, Chi Woong;Babu, Roshina
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.5
    • /
    • pp.431-438
    • /
    • 2016
  • Large energy consumption is one of the main weaknesses of RO desalination. A new method is proposed to reduce the energy consumption of RO desalination which depends on the salinity of the feedwater. Low salinity feedwater can be obtained using groundwater wells which extracts both fresh groundwater and subsurface sea water. Subsurface feedwater is advantageous in overcoming other problems associated with surface seawater intakes. Salinities of groundwater depend on a number of factors. In this work a new simulation-optimization model is proposed to identify well locations and pumping rates with would provide the required design flow rate with the minimum salinity. When groundwater is developed in a coastal area, the saltwater wedge advances inland and may contaminate existing groundwater wells, which must be prevented. The model can protect existing wells while developing minimum salinity feedwater. Examples are provided to demonstrate the usage of the model.

A strain-based wire breakage identification algorithm for unbonded PT tendons

  • Abdullah, A.B.M.;Rice, Jennifer A.;Hamilton, H.R.
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.415-433
    • /
    • 2015
  • Tendon failures in bonded post-tensioned bridges over the last two decades have motivated ongoing investigations on various aspects of unbonded tendons and their monitoring methods. Recent research shows that change of strain distribution in anchor heads can be useful in detecting wire breakage in unbonded construction. Based on this strain variation, this paper develops a damage detection model that enables an automated tendon monitoring system to identify and locate wire breaks. The first part of this paper presents an experimental program conducted to study the strain variation in anchor heads by generating wire breaks using a mechanical device. The program comprised three sets of tests with fully populated 19-strand anchor head and evaluated the levels of strain variation with number of wire breaks in different strands. The sensitivity of strain variation with wire breaks in circumferential and radial directions of anchor head in addition to the axial direction (parallel to the strand) were investigated and the measured axial strains were found to be the most sensitive. The second part of the paper focuses on formulating the wire breakage detection framework. A finite element model of the anchorage assembly was created to demonstrate the algorithm as well as to investigate the asymmetric strain distribution observed in experimental results. In addition, as almost inevitably encountered during tendon stressing, the effects of differential wedge seating on the proposed model have been analyzed. A sensitivity analysis has been performed at the end to assess the robustness of the model with random measurement errors.

Investigation of Autoignition of Propane and n-Butane Blends Using a Rapid Compression Machine

  • Kim, Hyunguk;Yongseob Lim;Kyoungdoug Min;Lee, Daeyup
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1127-1134
    • /
    • 2002
  • The effects of pressure and temperature on the autoignition of propane and n-butane blends were investigated using a rapid compression machine (RCM) , which is widely used to examine the autoignition characteristics. The RCM was designed to be capable of varying the compression ratio between 5 and 20 and minimize the vortex formation on the cylinder wall using a wedge-shaped crevice. The initial temperature and pressure of the compressed gas were varied in range of 720∼900 K and 1.6∼ 1.8 MPa, respectively, by adjusting the ratio of the specific heat of the mixture by altering the ratio of the non-reactive components (N$_2$, Ar) under a constant effective equivalence ratio (ø$\_$f/= 1.0) The gas temperature after the compression stroke could be obtained from the measured time-pressure record. The results showed a two-stage ignition delay and a Negative Temperature Coefficient (NTC) behavior which were the unique characteristic of the alkane series fuels. As the propane concentration in the blend were increased from 20% and 40% propane, the autoignition delay time increased by approximately 41 % and 55% at 750 K. Numerical reduced kinetic modeling was performed using the Shell model, which introduced some important chemical ideas, represented by the generic species. Several rate coefficients were calibrated based on the experimental results to establish an autoignition model of the propane and n-butane blends. These coefficients can be used to predict the autoignition characteristics in LPG fueled Sl engines.

Estimation of the Behavior of a Micropile due to Horizontal Load (횡방향 하중에 의한 마이크로파일의 거동 평가)

  • Lee, Seongmin;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.117-123
    • /
    • 2009
  • The mechanical behavior of a micropile due to horizontal load has not yet clearly identified in Korea. It has generally estimated from that of a traditional pile because there is no standard method even though it has shorter length. To tell the truth, its behavior is very different from a traditional pile's. Specifically, it is general fact that horizontal resistance of earth is one of the main factors to control the mechanical behavior of micropile. To this reason, a laboratory model has been made in this study to estimate the behavior of a micropile which loaded increasingly horizontally. The laboratory model has been designed to estimate both the behavior of load to displacement and skin friction to displacement. And the analysis of the latter was compared with the solution of strain wedge model. In the end, it was proved that the mechanical behavior of a micropile should be estimated from considering the horizontal resistance of earth.

  • PDF

Noise Modeling for CR Images of High-strength Materials (고강도매질 CR 영상의 잡음 모델링)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.95-102
    • /
    • 2008
  • This paper presents an appropriate approach for modeling noise in Computed Radiography(CR) images of high strength materials. The approach is specifically designed for types of noise with the statistical and nonlinear properties. CR images Ere degraded even before they are encoded by computer process. Various types of noise often contribute to contaminate radiography image, although they are detected on digitalization. Quantum noise, which is Poisson distributed, is a shot noise, but the photon distribution on Image Plate(IP) of CR system is not always Poisson process. The statistical properties are relative and case-dependant due to its material characteristics. The usual assumption of a distribution of Poisson, binomial and Gaussian statistics are considered. Nonlinear effect is also represented in the process of statistical noise model. It leads to estimate the noise variance in regions from high to low intensity, specifying analytical model. The analysis approach is tested on a database of steel tube step-wedge CR images. The results are available for the comparative parameter studies which measure noise coherence, distribution, signal/noise ratios(SNR) and nonlinear interpolation.

Establishment of the Heart Failure Model by Coronary Artery Ligation in Sheep (양에서 관상동맥 결찰에 의한 심부전 모델의 확립)

  • 나찬영;홍장수;박정준;김원곤;강문철;서정욱
    • Journal of Chest Surgery
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • Background: Despite the relatively high mortality rates in the chronic heart failure model induced by coronary artery ligation are relatively high, this model has been a subject of continuos research because of its clinical correlation. Chronic heart failure model of large-sized animals is very useful to analyse mechanical or biological effects on circulatory system which is difficult in small-sized animals. The purpose of this study is to establish the heart failure model by coronary artery ligation in sheep. Material and Method: Among 9 Corridale sheep, the homonymous artery and the diagonal branch were ligated simultaneously in 2 sheep and remaining 7 sheep were assigned to successive ligation of both arteries at an interval of 1 hour. Both coronary arteries were ligated from the point 40% proximal to the apex of the heart. Hemodynamic and echocardiographic parameters were analyzed before the ligation of the coronary artery, after the ligation of the homonymous artery, and after additional ligation of the diagonal branch. The experimental animals were sacrificed after 2 or 3 months of growth and histopathologic studies were performed Result: Immediate postoperative death occurred in the 2 sheep that had received simultaneous ligation of the homonymous artery and diagonal branch. On the other hand, all the 7 sheep that were lifated in succession were survived up to 3 months. Arterial pressure was sifnificantly decreased immediately after ligation of the homonymous artery(p<0.05), and the cardiac output was decreased and pulmonary capillary wedge pressure was increased after further ligation of the diagonal branch(p<0.05). Central venous pressure, pulmonary artery pressure, pulmonary capillary wedge pressure, left ventricular end-diastolic dimension and end-systolic dimension were markedly increased 3 months after ligation of coronary arteries. Anteroseptal akinesia or dyskinesia was developed after the ligation of coronary arteries. Histopathologic study revealed we]1-demarcated ischemic area of fibrosis. Conclusion: Using methods of successive ligation of the homonymous artery and diagonal branch, chronic heart failure model could be reliably established in sheep.

Determination of Thrust Distribution in the Supersonic Combustor (초음속 연소기 내부의 추력 분포 계산)

  • Heo, Hwan Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.69-75
    • /
    • 2003
  • The ideal thrust function is used to determine the local thrust of supersonic combustor. Method of thrust determination from measured pressures are applied to the Mach 2.5 model supersonic combustor. In this application, measured pressures from the experiments in the University of Michigan are used to determine the local thrust of supersonic combustor. Marginal results of local thrust are obtained and discussed. Combustion and wedge affect thrust distributions in the upstream region significantly. The thrust determination from pressure measurements can be a simple, feasible and applicable method, especially when thrust stand is not available.