DOI QR코드

DOI QR Code

Development of minimum-salinity feedwater for reduction of unit production cost of reverse-osmosis desalination plants

역삼투 담수화 시설의 생산단가 절감을 위한 저 염도 지하 기수 개발

  • 박남식 (동아대학교 공과대학 토목공학과) ;
  • 장치웅 (동아대학교 공과대학 토목공학과) ;
  • Received : 2016.03.31
  • Accepted : 2016.04.07
  • Published : 2016.05.31

Abstract

Large energy consumption is one of the main weaknesses of RO desalination. A new method is proposed to reduce the energy consumption of RO desalination which depends on the salinity of the feedwater. Low salinity feedwater can be obtained using groundwater wells which extracts both fresh groundwater and subsurface sea water. Subsurface feedwater is advantageous in overcoming other problems associated with surface seawater intakes. Salinities of groundwater depend on a number of factors. In this work a new simulation-optimization model is proposed to identify well locations and pumping rates with would provide the required design flow rate with the minimum salinity. When groundwater is developed in a coastal area, the saltwater wedge advances inland and may contaminate existing groundwater wells, which must be prevented. The model can protect existing wells while developing minimum salinity feedwater. Examples are provided to demonstrate the usage of the model.

역삼투 해수 담수화 공법의 주요 단점으로 여겨지고 있는 에너지 소비량을 줄이기 위한 방편으로 해안선을 통하여 바다로 유출되는 담수 지하수를 활용하여 낮은 염도의 원수를 확보하는 방안을 제시하였다. 저 염도 지하 염수는 담수화 비용 뿐 아니라 표류 해수 취수의 알려진 단점을 극복하는 데도 유리하다. 지하 염수의 염도는 해안선을 통하여 바다로 유출되는 담수 지하수량의 영향을 크게 받는다. 본 연구에서는 담수화 시설에 필요한 수량을 최저 염도로 충족시킬 수 있는 지하 염수 관정의 위치 및 양수량 분포를 산정할 수 있는 최적 전산설계모델을 개발하였다. 해안 지역에서 지하 염수를 개발하면 대수층으로 해수가 추가 침투하여 다른 사용자의 지하수 관정을 오염시킬 수 있다. 본 모델은 지하 염수 관정의 최적 설계 시에 기존 지하수 관정을 해수 침투로부터 보호할 수 있도록 구성되었다.

Keywords

References

  1. Akgul, D., Cakmakc, M., Kayaalp, N. and Koyuncu, I., (2008), Cost analysis of seawater desalination with reverse osmosis in Turkey, Desalination, 220(1), pp.123-131. https://doi.org/10.1016/j.desal.2007.01.027
  2. Al-Karaghouli, A. and Kazmerski, L., (2012), Economic and Technical Analysis of a Reverse-Osmosis Water Desalination Plant Using DEEP-3.2 Software, Journal of Environmental Science and Engineering. A, 1, 318-328.
  3. Ang, W.L., Mohammad, A.W., Hilal, N. and Leo, C.P., (2015), A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants, Desalination, 363, pp.2-18. https://doi.org/10.1016/j.desal.2014.03.008
  4. Bear, J. (1979). Hydraulics of Groundwater. McGraw Hill.
  5. Cooley, H., Ajami, N. and Heberger M., (2013), Key issues in seawater desalination in California - marine impacts, Pacific Institute, Oakland, California, USA.
  6. Ettouney, H.M., El-Dessouky, H.T., Faibish, R.S. and Gowin, P.J., (2002), Evaluating the economics of desalination, Chemical Engineering Progress, 98(12), pp.32-40.
  7. Goldberg, D.E., (1989) Genetic Algorithms in search, optimization and machine learning, Addison Wesley.
  8. Greenlee, L.F., Lawler, D.F., Freeman, B.D., Marrot, B. and Moulin, P., (2009), Reverse osmosis desalination: water sources, technology, and today's challenges, Water research, 43(9), pp.2317-2348. https://doi.org/10.1016/j.watres.2009.03.010
  9. Han, S.Y., Hong, S.H., Park, N., (2006), Distribution of coastal ground water discharge from surficial aquifers of major river districts, Journal of Korean Society of Civil Engineers, Vol. 26, No. 1B, 1-6.
  10. Huyakorn, P.S., Park, N., and Wu, Y.S. (1996). "Multiphase approach to the numerical solution of a sharp- interfaces saltwater intrusion problem." Water Resources Research, Vol. 32, No. 1, pp 93-102. https://doi.org/10.1029/95WR02919
  11. Jeong, S., Naidu, G., Vollprecht, R., Leiknes, T. and Vigneswaran, S., (2016), In-depth analyses of organic matters in a full-scale seawater desalination plant and an autopsy of reverse osmosis membrane, Separation and Purification Technology, 162, pp.171-179. https://doi.org/10.1016/j.seppur.2016.02.029
  12. Karagiannis, I.C. and Soldatos, P.G., (2008), Water desalination cost literature: review and assessment, Desalination, 223(1), pp.448-456. https://doi.org/10.1016/j.desal.2007.02.071
  13. Kim, S.J., Lee, Y.G., Cho, K.H., Kim, Y.M., Choi, S., Kim, I.S., Yang, D.R. and Kim, J.H., (2009), Site-specific raw seawater quality impact study on SWRO process for optimizing operation of the pressurized step, Desalination, 238(1), pp.140-157. https://doi.org/10.1016/j.desal.2008.01.044
  14. Kim, T.S. and Park, H.D., (2016), Lauroyl arginate ethyl: An effective antibiofouling agent applicable for reverse osmosis processes producing potable water, Journal of Membrane Science, 507, pp.24-33. https://doi.org/10.1016/j.memsci.2016.01.056
  15. Klinko, K.A., Light, W.G. and Cummings, C.M., (1985), Factors influencing optimum seawater reverse osmosis system designs, Desalination, 54, pp.3-18. https://doi.org/10.1016/0011-9164(85)80002-3
  16. Lattemann, S. and Hopner, T., (2008), Environmental impact and impact assessment of seawater desalination, Desalination, 220(1), pp.1-15. https://doi.org/10.1016/j.desal.2007.03.009
  17. Malaeb, L. and Ayoub, G.M., (2011), Reverse osmosis technology for water treatment: State of the art review, Desalination, 267(1), pp.1-8. https://doi.org/10.1016/j.desal.2010.09.001
  18. Miller J. E., (2003), Review of Water Resources and Desalination Technologies, Sandia National Laboratories, Albuquerque, NM. 49, SAND Report 2003-0800.
  19. Mudgal, A. and Davies, P.A., (2016), A cost-effective steam-driven RO plant for brackish groundwater, Desalination, 385, pp.167-177. https://doi.org/10.1016/j.desal.2016.02.022
  20. Park, N., Park, J., Mun, Y., Kim. J., (2011) Cost reduction for small-scale desalination plants, Journal of Korea Water Resources Association, Vol. 44, No. 10, 809-817. https://doi.org/10.3741/JKWRA.2011.44.10.809
  21. Penate, B. and Garcia-Rodriguez, L., (2012), Current trends and future prospects in the design of seawater reverse osmosis desalination technology, Desalination, 284, pp.1-8 https://doi.org/10.1016/j.desal.2011.09.010
  22. Qi, S., Wang, R., Chaitra, G.K.M., Torres, J., Hu, X. and Fane, A.G., (2016). Aquaporin-based biomimetic reverse osmosis membranes: Stability and long term performance, Journal of Membrane Science, 508, pp.94-103. https://doi.org/10.1016/j.memsci.2016.02.013
  23. Qureshi, B.A. and Zubair, S.M., (2015), Exergetic analysis of a brackish water reverse osmosis desalination unit with various energy recovery systems, Energy, 93, pp.256-265. https://doi.org/10.1016/j.energy.2015.09.003
  24. Reddy, K.V. and Ghaffour, N., 2007, Overview of the cost of desalinated water and costing methodologies, Desalination, 205(1), pp.340-353. https://doi.org/10.1016/j.desal.2006.03.558
  25. Sackinger, C.T., (1982), Energy advantages of reverse osmosis in seawater desalination, Desalination, 40(3), pp.271-281. https://doi.org/10.1016/S0011-9164(00)88695-6
  26. Shi, L., Cui, L, Park, N. and Huyakorn, P.S., (2011) Applicability of a sharp-interface model for estimating steady-state salinity at pumping wells-validation against sand tank experiments, J. of Contaminant Hydrology, 124, pp.35-42. https://doi.org/10.1016/j.jconhyd.2011.01.005
  27. Wilf, M. and Klinko, K., (2001), Optimization of seawater RO systems design. Desalination, 138(1), pp.299-306. https://doi.org/10.1016/S0011-9164(01)00278-8
  28. Younos, T. and Tulou, K.E., (2005), Overview of desalination techniques, Journal of Contemporary Water Research & Education, 132(1), pp.3-10. https://doi.org/10.1111/j.1936-704X.2005.mp132001002.x
  29. Younos, T., (2003), The economics of desalination, Journal of Contemporary Water Research & Education, 132,pp. 39?45.

Cited by

  1. Facile synthesis of TiO2/ZrO2 nanofibers/nitrogen co-doped activated carbon to enhance the desalination and bacterial inactivation via capacitive deionization vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-017-19027-w