DOI QR코드

DOI QR Code

Development of Range-Dependent Ray Model for Sonar Simulator

소나 시뮬레이터용 거리 종속 음선 모델 개발

  • 정영철 (서울대학교 조선해양공학과) ;
  • 이근화 (서울대학교 해양시스템공학연구소) ;
  • 성우제 (서울대학교 조선해양공학과) ;
  • 김형록 (국방과학연구소 제6기술연구본부)
  • Received : 2013.12.04
  • Accepted : 2014.04.17
  • Published : 2014.05.31

Abstract

Sound propagation algorithm for a sonar simulator is required to run in real-time and should be able to model the range and depth dependence of the Korean ocean environments. Ray model satisfies these requirements and we developed an algorithm for range-dependent ocean environments. In this algorithm, we considered depth-dependence of sound speed through rays based on a rectangular cell method and layer method. Range-dependence of sound speed was implemented based on a split-step method in the range direction. Eigen-ray is calculated through an interpolation of ray bundles and Gaussian interpolation function was used. The received time signal of sonar was simulated by Fourier transform of eigen-ray solution in the frequency domain. Finally, for the verification of proposed algorithm, we compared the results of transmission loss with other validated models such as BELLHOP, SNUPE, KRAKEN and OASES, for the Pekeris waveguide, wedge, and deep ocean environments. As a result, we obtained satisfactory agreements among them.

소나 시뮬레이터에 적용되는 음파 전달 알고리즘은 빠른 계산 성능이 요구되며, 한국 해양 환경의 특성을 고려하여 거리와 깊이 방향의 환경 의존성을 구현할 수 있어야 한다. 이러한 요구사항을 충족하는 음파 전달 알고리즘은 음선 모델이며, 본 논문에서는 거리 종속 해양환경의 음선 알고리즘을 개발하였다. 본 알고리즘에서는 사각 격자법과 층법으로 음선을 추적하여 음속 구조의 깊이 방향 의존성을 고려하였으며, 거리 방향은 split-step 개념을 적용하여 음속구조의 거리 방향 의존성을 구현하였다. 고유음선은 음선 묶음의 보간법을 통해 계산되었으며, 가우시안 보간 함수가 적용되었다. 소나의 시계열 수신 신호는 음원 신호와 고유 음선 주파수 해의 푸리에 변환을 이용하여 모의되었다. 최종적으로 제안된 음파 알고리즘을 검증하기 위해 Pekeris 도파관, 쐐기, 심해의 환경에서 전달손실 결과를 BELLHOP, SNUPE, KRAKEN, OASES 등 검증된 모델의 결과와 비교하였으며, 결과적으로 만족스런 결론을 얻을 수 있었다.

Keywords

References

  1. D. McCammon, "Active sonar modeling with emphasis on sonar simulators," DRDC Atlantic report, CR 2004-130 (2004).
  2. R. J. Urick, Principles of Underwater Sound (McGraw-Hill, New York, 1975), pp. 1-30.
  3. S. K. An, Development of a passive sonar simulator based on ray model, (Master's thesis, Seoul National University, 2011).
  4. B. U. Kim, Noise simulation and interference pattern analysis for submarine passive sonar, (Master's thesis, Seoul National University, 2013).
  5. M. J. Buckingham, "Ocean-acoustic propagation models," J. Acoustique. 3, 223-287 (1992).
  6. F. B. Jensen, W. A. Kuperman, M. B. Porter and H. Schmidt, Computational Ocean Acoustics (Springer, New York, 2011), pp. 100-103.
  7. K. H. Cha, J. S. Kim and W. J. Seong, "A study on benchmark of wave propagation model" (in Korean), J. Acoust. Soc. Kr. Suppl. 1(s) 18, 206-209 (1999).
  8. P. C. Etter, Underwater Acoustic Modeling and Simulation (Springer, New York, 2013), pp. 100-103.
  9. P. C. Etter, "Recent advances in underwater acoustic modelling and simulation," J. Sound Vib. 240, 351-383 (2001). https://doi.org/10.1006/jsvi.2000.3212
  10. J. A. Theriault and D. D. Dellis, "Shallow-water low frequency active sonar modelling issues," Proceedings of the MTS/IEEE Oceans '97 Conference, 672-678 (1997).
  11. R. P. Goddard, "The sonar simulation toolset, release 4.1: science, mathematics, and algorithms," APL-UW technical report, (2005).
  12. G. A. Deschamps, "Gaussian beam as a bundle of complex rays," Elect. Lett. 7, 1-2 (1971). https://doi.org/10.1049/el:19710001
  13. M. V. Porter and H. P. Bucker, "Gaussian beam tracing for computing ocean acoustic fields," J. Acoust. Soc. Am. 82, 1349-1359 (1987). https://doi.org/10.1121/1.395269
  14. H. Weinberg and R. E. Keenan, "Gaussian ray bundles for modeling high-frequency propagation loss under shallowwater condition," J. A coust. Soc. Am. 100, 1421-1431 (1996). https://doi.org/10.1121/1.415989
  15. C. Park, T. Cho, J. Ahn and W. Seong, "A study on the ray based broad band modeling for shallow water acoustic wave propagations" (in Korean) J. Acoust. Soc. Kr. 25, 298-304 (2006).
  16. K. H. Lee, Y. C. Chu, S. I. Kim, W. J. Seong, "A broad-band ray model using gaussian interpolation" (in Korean), J. Acoust. Soc. Kr. Suppl. 1(s) 29, 110-112 (2010).
  17. G. H. Brooke, D. F. McCammon, P. M. Giles, S. E. Dosso and M. Morley, "Comparison between BELHOP and PECAN for range-dependent bathymetry: errors arising in BELLHOP," DRDC Atlantic CR 2007-104 (2007).
  18. P. A. Baxley, H. Bucker and M. B. Porter, "Comparison of beam tracing algorithms," In proceedings of the 5th European Conference on Underwater Acoustics (2000).
  19. General description of the BELLHOP ray tracing program, http://www.oalib.hlsresearch. com/rays/generaldescription.pdf, 2008.
  20. K. Lee, "2D two-way parabolic equation algorithm using successive single scattering approach" (in Korean), J. Acoust. Soc. Kr. 25, 339-345 (2006).
  21. H. Schimidt, "SAFARI user's guide," SR-113, SACLANCEAN (1988).
  22. H. Schimidt, "OASES user's guide and reference manual," MIT (1997).
  23. M. B. Porter, "The KRAKEN normal mode code," SACLANT Undersea Research Centre memorandum SM-245, (1991).
  24. M. B. Porter, "The KRAKEN normal mode program," SACLANT Undersea Research (memorandum), San Bartolomeo, Italy, (1991).

Cited by

  1. Asymmetric Directionality of Broadband Ship Radiation Noise at Bow-Stern Aspect vol.34, pp.5, 2015, https://doi.org/10.7776/ASK.2015.34.5.343