• 제목/요약/키워드: Weather recognition

검색결과 102건 처리시간 0.038초

조도를 고려한 표지판 인식 (Traffic Sign Recognition Considering the Intensity of Illumination)

  • 차연화;전창묵;권태범;강성철
    • 로봇학회논문지
    • /
    • 제6권2호
    • /
    • pp.173-181
    • /
    • 2011
  • Recognition of traffic signs helps an unmanned ground vehicle to decide its behavior correctly, and it can reduce traffic accidents. However, low cost traffic sign recognition using a vision sensor is very difficult because the signs are exposed to various illumination conditions. This paper proposes a new approach to solve this problem using an illuminometer which detects the intensity of illumination. Using the intensity of illumination, the recognizer adjusts the parameters for image processing. Therefore, we can reduce the loss of information such as the shape and color of traffic signs. Experimental results show that the proposed method is able to improve the performance of traffic sign recognition in various weather and lighting conditions.

신경 진동자를 이용한 한글 문자의 인식 속도의 개선에 관한 연구 (A study for improvement of Recognition velocity of Korean Character using Neural Oscillator)

  • Kwon, Yong-Bum;Lee, Joon-Tark
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.491-494
    • /
    • 2004
  • Neural Oscillator can be applied to oscillatory systems such as the image recognition, the voice recognition, estimate of the weather fluctuation and analysis of geological fluctuation etc in nature and principally, it is used often to pattern recoglition of image information. Conventional BPL(Back-Propagation Learning) and MLNN(Multi Layer Neural Network) are not proper for oscillatory systems because these algorithm complicate Learning structure, have tedious procedures and sluggish convergence problem. However, these problems can be easily solved by using a synchrony characteristic of neural oscillator with PLL(phase-Locked Loop) function and by using a simple Hebbian learning rule. And also, Recognition velocity of Korean Character can be improved by using a Neural Oscillator's learning accelerator factor η$\_$ij/

  • PDF

GATE 자동화를 위한 컨테이너 식별자 인식 시스템 (Container Identifier Recognition System for GATE automation)

  • 유영달;하성욱;강대성
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1998년도 추계학술대회논문집:21세기에 대비한 지능형 통합항만관리
    • /
    • pp.137-141
    • /
    • 1998
  • Todays the efficient management of container has not been realized in container terminal, because of the excessive quantity of container transported and manual system. For the efficient and automated management of container in terminal, the automated container identifier recognition system in terminal is a significant problem. However, the identifier recognition rate is decreased owing to the difficulty of image preprocessing caused the refraction of container surface, the change of weather and the damaged identifier characters. Therefore, this paper proposes more accurate system for container identifier recognition as suggestion of Line-Scan Proper Region Detect for stronger preprocessing against external noisy element and Moment Back-Propagation Neural Network to recognize identifier.

  • PDF

게이트 자동화를 위한 컨테이너 식별자 인식 시스템 (Container Identifier Recognition System for GATE Automation)

  • 유영달;강대성
    • 한국항만학회지
    • /
    • 제12권2호
    • /
    • pp.225-232
    • /
    • 1998
  • Todays, the efficient management of container has not been realized in container terminal, because of the excessive quantity of container transported and manual system. For the efficient and automated management of container in terminal, the automated container identifier recognition system in terminal is a significant problem. However, the identifier recognition rate is decreased owing to the difficulty of image preprocessing caused the refraction of container surface, the change of weather and the damaged identifier characters. Therefore, this paper proposes more accurate system for container identifier recognition as suggestion of LSPRD(Line-Scan Proper Region Detection) for stronger preprocessing against external noisy element and MBP(Momentum Back-Propagation) neural network to recognize the identifier.

  • PDF

Deep Convolutional Auto-encoder를 이용한 환경 변화에 강인한 장소 인식 (Condition-invariant Place Recognition Using Deep Convolutional Auto-encoder)

  • 오정현;이범희
    • 로봇학회논문지
    • /
    • 제14권1호
    • /
    • pp.8-13
    • /
    • 2019
  • Visual place recognition is widely researched area in robotics, as it is one of the elemental requirements for autonomous navigation, simultaneous localization and mapping for mobile robots. However, place recognition in changing environment is a challenging problem since a same place look different according to the time, weather, and seasons. This paper presents a feature extraction method using a deep convolutional auto-encoder to recognize places under severe appearance changes. Given database and query image sequences from different environments, the convolutional auto-encoder is trained to predict the images of the desired environment. The training process is performed by minimizing the loss function between the predicted image and the desired image. After finishing the training process, the encoding part of the structure transforms an input image to a low dimensional latent representation, and it can be used as a condition-invariant feature for recognizing places in changing environment. Experiments were conducted to prove the effective of the proposed method, and the results showed that our method outperformed than existing methods.

버스 전용차선에서의 차량 번호판 추출 알고리즘 (Vehicle Plate Extraction Algorithm for an Exculsive Bus Lane)

  • 설성욱;이상찬;주재흠;강현인;남기곤
    • 융합신호처리학회논문지
    • /
    • 제2권4호
    • /
    • pp.31-37
    • /
    • 2001
  • 버스 전용차선 번호판 인식 시스템은 차량 검출 및 영상 획득 , 번호판 영역 추출 개별문자 추출, 문자인식 및 데이터 전송의 5가지 핵심부분으로 구성된다. 이 중에서도 번호판 추출의 정확성은 전체 시스템 인식률에 지대한 영향을 줄 수 있는 부분이며 다양한 날씨 및 주위 환경 변화에서도 정확한 추출을 요구한다. 본 논문에서는 검출 시간의 단축을 위해 획득된 영상을 피라미드 구조로 만든 후 번호판 템플릿의 영역을 이진화하고 번호판의 분포를 가지는 후보영역을 추출한다. 추출된 후보 영역 중 번호판 문자 분포의 특성을 이용한 검증과정을 통해 최종영역을 추출하는 방법을 제안한다. 제안된 방법을 버스 전용차선 도로에서 획득한 영상에 적용한 결과 다양한 날씨와 주위 환경변화에서도 번호판 영역이 정확이 추출됨을 확인하였다.

  • PDF

기상 정보 전달자의 과학의 본성에 대한 인식 연구 (Weather-Forecasters' Perception about the Nature of Science)

  • 박계현;한신;정진우;박태윤
    • 대한지구과학교육학회지
    • /
    • 제8권2호
    • /
    • pp.114-127
    • /
    • 2015
  • The nature of science has been recognized in a great deal in the field of science education. However, Most of the papers were going to study of teachers and students. to improve their recognition of the nature of science. The current study describes and analyzes Weather-Forecaster's understandings of the nature of science (NOS). Data used in this study were collected from 3 Weather-Forecasters using an semi-structured interview. The results of this study were as follows. First, the participants recognized that science has explored the phenomenon of unknown facts or observations and they were careful inductive perspective. Second, participants felt that science and society are associated with each other. Also, all participants were judged science verification process is required. Third, they are showed that science and technology interact closely with social relationships.

A Study on Improving License Plate Recognition Performance Using Super-Resolution Techniques

  • Kyeongseok JANG;Kwangchul SON
    • 한국인공지능학회지
    • /
    • 제12권3호
    • /
    • pp.1-7
    • /
    • 2024
  • In this paper, we propose an innovative super-resolution technique to address the issue of reduced accuracy in license plate recognition caused by low-resolution images. Conventional vehicle license plate recognition systems have relied on images obtained from fixed surveillance cameras for traffic detection to perform vehicle detection, tracking, and license plate recognition. However, during this process, image quality degradation occurred due to the physical distance between the camera and the vehicle, vehicle movement, and external environmental factors such as weather and lighting conditions. In particular, the acquisition of low-resolution images due to camera performance limitations has been a major cause of significantly reduced accuracy in license plate recognition. To solve this problem, we propose a Single Image Super-Resolution (SISR) model with a parallel structure that combines Multi-Scale and Attention Mechanism. This model is capable of effectively extracting features at various scales and focusing on important areas. Specifically, it generates feature maps of various sizes through a multi-branch structure and emphasizes the key features of license plates using an Attention Mechanism. Experimental results show that the proposed model demonstrates significantly improved recognition accuracy compared to existing vehicle license plate super-resolution methods using Bicubic Interpolation.

심층신경망을 활용한 활주로 가시거리 예측 모델 개발 (Development for Estimation Model of Runway Visual Range using Deep Neural Network)

  • 구성관;홍석민
    • 한국항행학회논문지
    • /
    • 제21권5호
    • /
    • pp.435-442
    • /
    • 2017
  • 안개 등의 영향을 받는 활주로 시정은 비행장에서 항공기 이착륙의 가능 여부를 결정하는 주요 지표중 하나이다. 운송용 항공기가 운항되는 공항의 경우 활주로 시정을 포함한 주요 국지 기상 예보를 시행하며, 이를 항공종사자가 확인할 수 있도록 하고 있다. 본 논문은 최근 영상 처리, 음성 인식, 자연어 처리 등의 다양한 분야에 적용되고 있는 심층신경망을 활주로 시정 예측에 적용하여 국지 비행장의 활주로 시정 예측 모델을 개발하고 이를 활용한 예측을 수행하였다. 적용 대상 비행장의 과거 실제 기상 관측 값을 활용하여 신경망 학습 후 시정에 대한 예측을 수행하였고, 기존 관측 데이터와 비교한 결과 비교적 정확한 예측 결과를 확인하였다. 또한 개발된 모델은 별도의 예보 기능이 없는 해당 비행장에서 참고할 수 있는 기상정보를 생성하는데 사용될 수 있을 것이다.

In-Vehicle AR-HUD System to Provide Driving-Safety Information

  • Park, Hye Sun;Park, Min Woo;Won, Kwang Hee;Kim, Kyong-Ho;Jung, Soon Ki
    • ETRI Journal
    • /
    • 제35권6호
    • /
    • pp.1038-1047
    • /
    • 2013
  • Augmented reality (AR) is currently being applied actively to commercial products, and various types of intelligent AR systems combining both the Global Positioning System and computer-vision technologies are being developed and commercialized. This paper suggests an in-vehicle head-up display (HUD) system that is combined with AR technology. The proposed system recognizes driving-safety information and offers it to the driver. Unlike existing HUD systems, the system displays information registered to the driver's view and is developed for the robust recognition of obstacles under bad weather conditions. The system is composed of four modules: a ground obstacle detection module, an object decision module, an object recognition module, and a display module. The recognition ratio of the driving-safety information obtained by the proposed AR-HUD system is about 73%, and the system has a recognition speed of about 15 fps for both vehicles and pedestrians.