Acknowledgement
This work was conducted during the sabbatical leave with support from Kwangwoon University in 2023.
References
- Arica, N., & Yarman-Vural, F. T. (2002). Optical character recognition for cursive handwriting. IEEE transactions on pattern analysis and machine intelligence, 24(6), 801-813.
- Bugeja, M., Dingli, A., Attard, M., & Seychell, D. (2020). Comparison of vehicle detection techniques applied to IP camera video feeds for use in intelligent transport systems. Transportation Research Procedia, 45, 971-978.
- Cai, W., & Wei, Z. (2020). Remote sensing image classification based on a cross-attention mechanism and graph convolution. IEEE Geoscience and Remote Sensing Letters, 19, 1-5.
- Chen, Y., Peng, G., Zhu, Z., & Li, S. (2020). A novel deep learning method based on attention mechanism for bearing remaining useful life prediction. Applied Soft Computing, 86, 105919.
- Cui, X., Wang, Q., Dai, J., Xue, Y., & Duan, Y. (2021). Intelligent crack detection based on attention mechanism in convolution neural network. Advances in Structural Engineering, 24(9), 1859-1868.
- Dong, C., Loy, C. C., He, K., & Tang, X. (2014). Learning a deep convolutional network for image super-resolution. In Computer Vision-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part IV 13 (pp. 184-199). Springer International Publishing.
- Drobac, S., & Linden, K. (2020). Optical character recognition with neural networks and post-correction with finite state methods. International Journal on Document Analysis and Recognition (IJDAR), 23(4), 279-295.
- Dui, H., Zhang, S., Liu, M., Dong, X., & Bai, G. (2024). IoT-enabled real-time traffic monitoring and control management for intelligent transportation systems. IEEE Internet of Things Journal.
- El Bahi, H., & Zatni, A. (2019). Text recognition in document images obtained by a smartphone based on deep convolutional and recurrent neural network. Multimedia tools and applications, 78(18), 26453-26481.
- Guerrero-Ibanez, J., Contreras-Castillo, J., & Zeadally, S. (2021). Deep learning support for intelligent transportation systems. Transactions on Emerging Telecommunications Technologies, 32(3), e4169.
- Hassan, T., El-Mowafy, A., & Wang, K. (2021). A review of system integration and current integrity monitoring methods for positioning in intelligent transport systems. IET Intelligent Transport Systems, 15(1), 43-60.
- Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., ... & Shi, W. (2017). Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4681-4690).
- Lieskovska, E., Jakubec, M., Jarina, R., & Chmulik, M. (2021). A review on speech emotion recognition using deep learning and attention mechanism. Electronics, 10(10), 1163.
- Liu, Y., Shao, Z., & Hoffmann, N. (2021). Global attention mechanism: Retain information to enhance channel-spatial interactions. arXiv preprint arXiv:2112.05561.
- Memon, J., Sami, M., Khan, R. A., & Uddin, M. (2020). Handwritten optical character recognition (OCR): A comprehensive systematic literature review (SLR). IEEE access, 8, 142642-142668.
- Ngeni, F. C., Mwakalonge, J. L., Comert, G., Siuhi, S., & Vaidyan, V. (2022). Monitoring of Illegal Removal of Road Barricades Using Intelligent Transportation Systems in Connected and Non-Connected Environments.
- Qiu, L., Zhang, D., Tian, Y., & Al-Nabhan, N. (2021). Deep learning-based algorithm for vehicle detection in intelligent transportation systems. The Journal of Supercomputing, 77(10), 11083-11098.
- Qiu, M., Christopher, L., Chien, S. Y. P., & Chen, Y. (2024). Intelligent Highway Adaptive Lane Learning System in Multiple ROIs of Surveillance Camera Video. IEEE Transactions on Intelligent Transportation Systems.
- Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D. J., & Norouzi, M. (2022). Image super-resolution via iterative refinement. IEEE transactions on pattern analysis and machine intelligence, 45(4), 4713-4726.
- Salvetti, F., Mazzia, V., Khaliq, A., & Chiaberge, M. (2020). Multi-image super resolution of remotely sensed images using residual attention deep neural networks. Remote Sensing, 12(14), 2207.
- Woo, S., Park, J., Lee, J. Y., & Kweon, I. S. (2018). Cbam: Convolutional block attention module. In Proceedings of the European conference on computer vision (ECCV) (pp. 3-19).
- Yang, J., Wright, J., Huang, T. S., & Ma, Y. (2010). Image super-resolution via sparse representation. IEEE transactions on image processing, 19(11), 2861-2873.