• 제목/요약/키워드: Wearable soft sensor

검색결과 12건 처리시간 0.024초

나노입자 기반의 웨어러블 센서 (Nanoparticle based Wearable Sensor)

  • 우호균;안준혁;오승주
    • 세라미스트
    • /
    • 제22권1호
    • /
    • pp.4-16
    • /
    • 2019
  • Recently, wearable sensors have received considerable attention in a variety of research fields and industries as the importance of wearable healthcare systems, soft robotics and bio-integrated devices increased. However, expensive and complex processes are hindering the commercialization of wearable sensors. Nanoparticle presents some of solutions to these problems as its adjustable for processability and tunable properties. In this paper, the recent development of nanoparticle based pressure and strain sensors was reviewed, and a discussion on their strategies to overcome the conventional limitation and operating principles is presented.

웨어러블 소프트 센서 장갑의 손가락 관절 관절가동범위 측정에 대한 신뢰도 분석 (Reliability Analysis of Finger Joint Range of Motion Measurements in Wearable Soft Sensor Gloves)

  • 김은경;김진홍;김유리;홍예지;이강표;전은혜;배준범;김수인;이상이
    • PNF and Movement
    • /
    • 제21권2호
    • /
    • pp.171-183
    • /
    • 2023
  • Purpose: The purpose of this study was to compare universal goniometry (UG), which is commonly used in clinical practice to measure the range of motion (ROM) of finger joints with a wearable soft sensor glove, and to analyze the reliability to determine its usefulness. Methods: Ten healthy adults (6 males, 4 females) participated in this study. The metacarpophalangeal joint (MCP), interphalangeal joint (IP), and proximal interphalangeal joint (PIP) of both hands were measured using UG and Mollisen HAND soft sensor gloves during active flexion, according to the American Society for Hand Therapists' measurement criteria. Measurements were taken in triplicate and averaged. The mean and standard deviation of the two methods were calculated, and the 95% limits of agreement (LOA) of the measurements were calculated using the intraclass correlation coefficient (ICC) and Bland-Altman plot to examine the reliability and discrepancies between the measurements. Results: The results of the mean values of the flexion angles for the active range of motion (AROM) of the finger joints showed large angular differences in the finger joints, except for the MCP of the thumb. In the inter-rater reliability analysis according to the measurement method, the ICC (2, 1) value showed a low level close to 0, and the mean difference by the Bland-Altman plot showed a value greater than 0, showing a pattern of discrepancy. The 95% LOA had a wide range of differences. Conclusion: This study is a preliminary study investigating the usefulness of the soft sensor glove, and the reliability analysis showed a low level of reliability and inconsistency. However, if future studies can overcome the limitations of this study and the technical problems of the soft sensor glove in the development stage, it is suggested that the measurement instrument can show more accurate measurement and higher reliability when measuring ROM with UG.

Wearable sensor network system for walking assistance

  • Moromugi, Shunji;Owatari, Hiroshi;Fukuda, Yoshio;Kim, Seok-Hwan;Tanaka, Motohiro;Ishimatsu, Takakazu;Tanaka, Takayuki;Feng, Maria Q.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2138-2142
    • /
    • 2005
  • A wearable sensor system is proposed as a man-machine interface to control a device for walking assistance. The sensor system is composed of small sensors to detect the information about the user's body motion such as the activity level of skeletal muscles and the acceleration of each body parts. Each sensor includes a microcomputer and all the sensors are connected into a network by using the serial communication function of the microcomputer. The whole network is integrated into a belt made of soft fabric, thus, users can put on/off very easily. The sensor system is very reliable because of its decentralized network configuration. The body information obtained from the sensor system is used for controlling the assisting device to achieve a comfortable and an effective walking training.

  • PDF

Current Development in Bio-implantable Sensors

  • Swarup, Biswas;Yongju, Lee;Hyojeong, Choi;Hyeok, Kim
    • 센서학회지
    • /
    • 제31권6호
    • /
    • pp.403-410
    • /
    • 2022
  • Flexible and wearable sensing technologies have emerged as a result of developments in interdisciplinary research across several fields, bringing together various subjects such as biology, physics, chemistry, and information technology. Moreover, various types of flexible wearable biocompatible devices, such customized medical equipment, soft robotics, bio-batteries, and electronic skin patches, have been developed over the last several years that are extensively employed to monitor biological signals. As a result, we present an updated overview of new bio-implantable sensor technologies for various applications and a brief review of the state-of-the-art technologies.

Highly Sensitive Stretchable Electronic Skin with Isotropic Wrinkled Conductive Network

  • Seung Hwan Jeon;Hyeongho Min;Jihun Son;Tae Kon Ahn;Changhyun Pang
    • 센서학회지
    • /
    • 제33권1호
    • /
    • pp.7-11
    • /
    • 2024
  • Soft-pressure sensors have numerous applications in soft robotics, biomedical devices, and wearable smart devices. Herein, we present a highly sensitive electronic skin device with an isotropic wrinkled pressure sensor. A conductive ink for soft pressure sensors is produced by a solution process using polydimethylsiloxane (PDMS), poly 3-hexylthiophene (P3HT), carbon black, and chloroform as the solvents. P3HT provides high reproducibility and conductivity by improving the ink dispersibility. The conductivity of the ink is optimized by adjusting the composition of the carbon black and PDMS. Soft lithography is used to fabricate a conductive elastic structure with an isotropic wrinkled structure. Two conductive elastic structures with an isotropic wrinkle structure is stacked to develop a pressure sensor, and it is confirmed that the isotropic wrinkle structure is more sensitive to pressure than when two elastic structures with an anisotropic wrinkle structure are overlapped. Specifically, the pressure sensor fabricated with an isotropic wrinkled structure can detect extremely low pressures (1.25 Pa). Additionally, the sensor has a high sensitivity of 15.547 kpa-1 from 1.25 to 2500 Pa and a linear sensitivity of 5.15 kPa-1 from 2500 Pa to 25 kPa.

폴리우레탄 기반 복합 섬유의 기계적, 전기적 특성 (Mechanical and Electrical Characteristics of Polyurethane-Based Composite Fibers)

  • 장호영;이현종;석지원
    • Composites Research
    • /
    • 제33권2호
    • /
    • pp.50-54
    • /
    • 2020
  • 소프트 로봇 및 웨어러블 소자는 대변형 및 큰 유연성을 요구한다. 이에 따라, 소프트 로봇 또는 웨어러블 소자에 부착하여 사용할 수 있는 신축성 스트레인 센서의 필요성이 대두되고 있다. 본 연구에서는 폴리우레탄과 은나노꽃입자를 혼합하여 신축성과 전기전도성을 갖는 복합 섬유를 제조하였다. 이러한 복합 섬유는 스트레인에 따라 섬유의 저항이 변하게 되어 신축성 스트레인 센서로 가능성이 높다. 복합 섬유를 신축성 스트레인 센서로 활용하기 위해서, 복합 섬유의 기계적, 전기적 특성을 측정, 분석하였다.

삼차원 프린트된 몰드와 액체 금속을 이용한 웨어러블 힘 센서 개발 (Wearable Force Sensor Using 3D-printed Mold and Liquid Metal)

  • 김규영;최중락;정용록;김민성;김승환;박인규
    • 센서학회지
    • /
    • 제28권3호
    • /
    • pp.198-204
    • /
    • 2019
  • In this study, we propose a wearable force sensor using 3D printed mold and liquid metal. Liquid metal, such as Galinstan, is one of the promising functional materials in stretchable electronics known for its intrinsic mechanical and electronic properties. The proposed soft force sensor measures the external force by the resistance change caused by the cross-sectional area change. Fused deposition modeling-based 3D printing is a simple and cost-effective fabrication of resilient elastomers using liquid metal. Using a 3D printed microchannel mold, 3D multichannel Galinstan microchannels were fabricated with a serpentine structure for signal stability because it is important to maintain the sensitivity of the sensor even in various mechanical deformations. We performed various electro-mechanical tests for performance characterization and verified the signal stability while stretching and bending. The proposed sensor exhibited good signal stability under 100% longitudinal strain, and the resistance change ranged within 5% of the initial value. We attached the proposed sensor on the finger joint and evaluated the signal change during various finger movements and the application of external forces.

구현방식이 용이한 텍스타일 터치센서 개발 및 구조적 설계 (Development and Structural Design of Textile Touch Sensor Easily Implemented)

  • 김지선;박진희;김주용
    • 한국의류학회지
    • /
    • 제45권1호
    • /
    • pp.168-179
    • /
    • 2021
  • This study presents and develops a textile type touch sensor structural design that is easy to implement. First, the design of the touch sensor circuit finds the size of the switch with the easiest finger contact and selects a structure with a long circuit with the lowest resistance value. An experiment is performed on a change in an electrostatic capacitance value that accompanies the distance on the electrode and the magnitude of the electrode area of the structure; however, the structure having the distance on the electrode and the large electrode area shows the best resistance change. The laundry assessment was conducted three times at a time and ten times at a time with an average standard deviation less than one ohm, with little change in resistance. Consequently, there were no problems with durability and performance for laundry. Finally, in the bending evaluation, the difference in resistance can be seen between 1-2 ohms and was developed as a smart wearable in the future; in addition, there was no problem as a difference in resistance can be seen between 1 and 2 ohms.

소프트 컴퓨팅에 의한 지능형 주행 판단 시스템 (A Judgment System for Intelligent Movement Using Soft Computing)

  • 최우경;서재용;김성현;유성욱;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.544-549
    • /
    • 2006
  • 본 논문은 인간의 보조 역할을 하기 위해 자율적인 명령을 내리고 사용자가 직접 제어할 수 있는 지능형 주행 판단 시스템(Judgment System for Intelligent Movement; JSIM)에 대한 연구이다. 본 논문에서는 제어 대상은 이동 로봇으로 한정한다. 이동 로봇은 지능형 주행 판단 모듈을 휴대한 사용자에게 영상정보와 초음파 센서 정보를 제공하고 가이드 역할을 수행한다. 그리고 PDA와 센서박스로 구성된 지능형 주행 판단 시스템은 이동로봇으로부터 얻은 정보와 사용자 명령을 입력으로 사용하는 소프트 컴퓨팅 기법을 이용하여 이동로봇의 속도와 방향을 결정하고 다양한 기능을 수행하도록 로봇을 원격으로 제어한다. 본 논문에서는 몸에 착용하고 주변장치들과 통신을 하며 지능적 판단을 할 수 있는 지능형 주행 판단시스템을 구성하고 실제 환경에서 지능적 판단 알고리즘 적용과 이동로봇을 제어하는 시스템을 구현하여 제안한 시스템의 실현 가능성을 검증한다. 지능 알고리즘은 계층적 퍼지 구조와 신경망을 융합한 구조이다.

직물형 피트니스 밴드 디자인 및 개발 (Design and development of fabric-type fitness band)

  • 정다운;이소정;권채령;박이화;허서원;김동은
    • 복식문화연구
    • /
    • 제26권4호
    • /
    • pp.632-648
    • /
    • 2018
  • This study aims to contribute to the development of sports wearables. It was conducted by a convergence team of professionals in the fashion industry, kinesiology and sports studies, and computer science and engineering. The purpose of the current study was to design and develop a fabric-type fitness band for a sensor to measure acceleration during jump rope exercises. Computer science and engineering professionals developed the Arduino board and sensor, kinesiology and sports studies provided the necessary exercise protocol, and the fashion industry professionals developed the band. First, a fitness band preference survey was completed by men and women between the ages of 20 and 50. Typical uses of the band included tracking exercise amount as measured by the number of steps taken and calories burned. Strap watch closure, a single color and achromatic color, and soft and smooth touch materials were preferred as band design. Second, two fabric-type fitness bands were designed and developed. Design 1 had a 3-dimensional pocket for the sensor, bright blue color, and stretch binding around the edges and for a loop. Design 2 had a flat pocket for the sensor, achromatic color, mesh binding around the edges and two metal loops. Both designs had Velcro as a closure. Third, wear testing of both bands with the sensor were conducted of 15 women in their 20s. They wore the bands during jump rope exercises. Both bands generally satisfied the participants. The Design 2 band was slightly more satisfying than the Design 1 band.