DOI QR코드

DOI QR Code

Current Development in Bio-implantable Sensors

  • Swarup, Biswas (School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul) ;
  • Yongju, Lee (School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul) ;
  • Hyojeong, Choi (School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul) ;
  • Hyeok, Kim (School of Electrical and Computer Engineering, Center for Smart Sensor System of Seoul (CS4), University of Seoul)
  • Received : 2022.11.13
  • Accepted : 2022.11.30
  • Published : 2022.11.30

Abstract

Flexible and wearable sensing technologies have emerged as a result of developments in interdisciplinary research across several fields, bringing together various subjects such as biology, physics, chemistry, and information technology. Moreover, various types of flexible wearable biocompatible devices, such customized medical equipment, soft robotics, bio-batteries, and electronic skin patches, have been developed over the last several years that are extensively employed to monitor biological signals. As a result, we present an updated overview of new bio-implantable sensor technologies for various applications and a brief review of the state-of-the-art technologies.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NO. 2022R1A2C2007784) and the Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0017011, HRD Program for Industrial Innovation). This research was also supported by the National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2021M3H2A1038042).

References

  1. Y. Ohm, C. Pan, M. J. Ford, X. Huang, J. Liao, and C. Majidi, "An electrically conductive silver-polyacrylamide- alginate hydrogel composite for soft electronics", Nat. Electron., Vol. 4, No. 3, 185-192, 2021. https://doi.org/10.1038/s41928-021-00545-5
  2. Q. Su, Q. Zou, Y. Li, Y. Chen, S.-Y. Teng, J. T. Kelleher, R. Nith, P. Cheng, N. Li, and W. Liu, "A stretchable and strain-unperturbed pressure sensor for motion interference-free tactile monitoring on skins", Sci. Adv., Vol. 7, No. 48, pp. eabi4563(1)- eabi4563(9), 2021.
  3. A. H. Anwer, N. Khan, M. Z. Ansari, S.-S. Baek, H. Yi, S. Kim, S. M. Noh, and C. Jeong, "Recent advances in touch sensors for flexible wearable devices", Sens., Vol. 22, No. 12, pp. 4460(1)-4460(21), 2022.
  4. K. Guo, S. Wustoni, A. Koklu, E. Diaz-Galicia, M. Moser, A. Hama, A. A. Alqahtani, A. N. Ahmad, F. S. Alhamlan, and M. Shuaib, "Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors", Nat. Biomed. Eng., Vol. 5, No. 7, pp. 666-677, 2021. https://doi.org/10.1038/s41551-021-00734-9
  5. C. Chen, S. Zhao, C. Pan, Y. Zi, F. Wang, C. Yang, and Z. L. Wang, "A method for quantitatively separating the piezoelectric component from the as-received 'Piezoelectric' signal", Nat. Commun., Vol. 13, No. 1, pp. 1-9, 2022.
  6. H. Xu, W. Zheng, Y. Wang, D. Xu, N. Zhao, Y. Qin, Y. Yuan, Z. Fan, X. Nan, and Q. Duan, "Flexible tensile strain-pressure sensor with an off-axis deformation-insensitivity", Nano Energy, p. 107384, 2022.
  7. Y. Wang, C. Xu, X. Yu, H. Zhang, and M. Han, "Multilayer flexible electronics: Manufacturing approaches and applications", Mater. Today Phys., p. 100647, 2022.
  8. K. Cao, M. Wu, J. Bai, Z. Wen, J. Zhang, T. Wang, M. Peng, T. Liu, Z. Jia, and Z. Liang, "Beyond Skin Pressure Sensing: 3D Printed Laminated Graphene Pressure Sensing Material Combines Extremely Low Detection Limits with Wide Detection Range", Adv. Funct. Mater., p. 2202360, 2022.
  9. Y. Chen, C. Zhang, R. Yin, A. Yin, Q. Feng, F. Liu, J. Shao, T. Su, H. Wang, and G. Chen, "Environmentally adaptive and durable hydrogels toward multi-sensory application", Chem. Eng. J., Vol. 449, p. 137907, 2022.
  10. G. Khandelwal and R. Dahiya, "Self-Powered Active Sensing based on Triboelectric Generator", Adv. Mater.,p. 2200724, 2022.
  11. S. Lin, S. Hu, W. Song, M. Gu, J. Liu, J. Song, Z. Liu, Z. Li, K. Huang, and Y. Wu, "An ultralight, flexible, and biocompatible all-fiber motion sensor for artificial intelligence wearable electronics", Npj Flex. Electron., Vol. 6, No. 1, pp. 1-8, 2022. https://doi.org/10.1038/s41528-022-00133-3
  12. Z. Zhao, K. Liu, Y. Liu, Y. Guo, and Y. Liu, "Intrinsically flexible displays: key materials and devices", Natl. Sci. Rev., Vol. 9, No. 6, p. nwac090, 2022.
  13. Z. Tang, C. He, H. Tian, J. Ding, B.S. Hsiao, B. Chu, and X. Chen, "Polymeric nanostructured materials for biomedical applications", Prog. in Polym. Sci., Vol. 60, pp. 86-128, 2016. https://doi.org/10.1016/j.progpolymsci.2016.05.005
  14. Z. Wang, H. Cui, S. Li, X. Feng, J. Aghassi-Hagmann, S. Azizian, and P. A. Levkin, "Facile approach to conductive polymer microelectrodes for flexible electronics", ACS Appl. Mater. Interfaces, Vol. 13, No. 18, pp. 21661-21668, 2021. https://doi.org/10.1021/acsami.0c22519
  15. S. Y. Son, G. Lee, H. Wang, S. Samson, Q. Wei, Y. Zhu, W. You, "Integrating charge mobility, stability and stretch-ability within conjugated polymer films for stretchable multifunctional sensors", Nat. Commun., Vol. 13, No. 1, pp. 1-11, 2022.
  16. B. Cheng, J. Yu, T. Arisawa, K. Hayashi, J. J. Richardson, Y. Shibuta, and H. Ejima, "Ultrastrong underwater adhesion on diverse substrates using non-canonical phenolic groups", Nat. Commun., Vol. 13, No. 1, pp. 1-9, 2022.
  17. B. Fang, J. Yan, D. Chang, J. Piao, K. M. Ma, Q. Gu, P. Gao, Y. Chai, and X. Tao, "Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors", Nat. Commun., Vol. 13, No. 1, pp. 1-9, 2022.
  18. G. Wu, X. Wu, X. Zhu, J. Xu, and N. Bao, "Two-dimensional hybrid nanosheet-based supercapacitors: From building block architecture, fiber assembly, and fabric construction to wearable applications", ACS Nano, Vol. 16, No. 7, pp. 10130-10155, 2022. https://doi.org/10.1021/acsnano.2c02841
  19. K. Dong, X. Peng, R. Cheng, C. Ning, Y. Jiang, Y. Zhang, and Z. L. Wang, "Advances in High-Performance Autonomous Energy and Self-Powered Sensing Textiles with Novel 3D Fabric Structures", Adv. Mater., p. 2109355, 2022.
  20. V. G. Muir and J. A. Burdick, "Chemically modified biopolymers for the formation of biomedical hydrogels", Chem. Rev., Vol. 121, No. 18, pp. 10908-10949, 2020.
  21. J. Yang, J. An, Y. Sun, J. Zhang, L. Zu, H. Li, T. Jiang, B. Chen, and Z. L. Wang, "Transparent self-powered triboelectric sensor based on PVA/PA hydrogel for promoting human-machine interaction in nursing and patient safety", Nano Energy, Vo. 97, p. 107199, 2022.
  22. Z. S. Nishat, T. Hossain, M. N. Islam, H. P. Phan, M. A. Wahab, M. A. Moni, C. Salomon, M. A. Amin, A. A. I. Sina, and M. S. A. Hossain, "Hydrogel Nanoarchitectonics: An Evolving Paradigm for Ultrasensitive Biosensing", Small, p. 2107571, 2022.
  23. C. Lim, Y. J. Hong, J. Jung, Y. Shin, S.-H. Sunwoo, S. Baik, O. K. Park, S. H. Choi, T. Hyeon, and J. H. Kim, "Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels", Sci. Adv., Vol. 7, No. 19, pp. eabd3716(1)-eabd3716(11), 2021.
  24. T. He, A.R. Puente-Santiago, S. Xia, M.A. Ahsan, G. Xu, and R. Luque, "Experimental and Theoretical Advances on Single Atom and Atomic Cluster-Decorated Low-Dimensional Platforms towards Superior Electrocatalysts", Adv. Energy Mater., Vol. 12, No. 22, pp. 2200493(1)-2200493(28), 2022.
  25. X. Meng, Y. Qiao, C. Do, W. Bras, C. He, Y. Ke, T. P. Russell, and D. Qiu, "Hysteresis-Free Nanoparticle-Reinforced Hydrogels", Adv. Mater., Vol. 34, Vol. 7, p, 2108243, 2022.
  26. X. Zhang, X. Cheng, Y. Si, J. Yu, and B. Ding, "Elastic and highly fatigue resistant ZrO2-SiO2 nanofibrous aerogel with low energy dissipation for thermal insulation", Chem. Eng. J., Vol. 433, p. 133628, 2022.
  27. J. Kim, G. Zhang, M. Shi, and Z. Suo, "Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links", Sci., Vol. 374, No. 6564, pp. 212-216, 2021. https://doi.org/10.1126/science.abg6320
  28. M. L. Verma, B. Dhanya, R. Saini, A. Das, and R. S. Varma, "Synthesis and application of graphene-based sensors in biology: a review", Environ. Chem. Lett., pp. 1-24, 2022.
  29. A. Kohls, M. Maurer Ditty, F. Dehghandehnavi, and S.-Y. Zheng, "Vertically Aligned Carbon Nanotubes as a Unique Material for Biomedical Applications", ACS Appl. Mater. Interfaces, Vol. 14,, No. 5, pp. 6287-6306, 2022. https://doi.org/10.1021/acsami.1c20423
  30. B. Gaihre, M. A. Potes, V. Serdiuk, M. Tilton, X. Liu, and L. Lu, "Two-dimensional nanomaterials-added dynamism in 3D printing and bioprinting of biomedical platforms: Unique opportunities and challenges", Biomater., Vol. 284, p. 121507, 2022.
  31. L. Donaldson, "Wearable sweat sensor for healthcare monitoring", Elsevier, 2022.
  32. Y. G. Park, I. Yun, W. G. Chung, W. Park, D. H. Lee, J. U. Park, "High-Resolution 3D Printing for Electronics", Adv. Sci., Vol. 9, No. 8, p. 2104623, 2022.
  33. Y. Cheng, X. Gong, J. Yang, G. Zheng, Y. Zheng, Y. Li, Y. Xu, G. Nie, X. Xie, and M. Chen, "A touch-actuated glucose sensor fully integrated with microneedle array and reverse iontophoresis for diabetes monitoring", Biosens. Bioelectron., Vol. 203, p. 114026, 2022.
  34. G. D. Cha, W. H. Lee, S.-H. Sunwoo, D. Kang, T. Kang, K. W. Cho, M. Kim, O. K. Park, D. Jung, J. Lee, "Multifunctional Injectable hydrogel for in vivo diagnostic and therapeutic applications", ACS Nano, Vol. 16, No. 1, pp. 554-567, 2022. https://doi.org/10.1021/acsnano.1c07649
  35. L. Pan, L. Han, H. Liu, J. Zhao, Y. Dong, and X. Wang, "Flexible sensor based on Hair-like microstructured ionic hydrogel with high sensitivity for pulse wave detection", Chem. Eng. J., Vol. 450, p. 137929, 2022.
  36. Y. Wang, D. Liu, Y. Zhang, L. Fan, Q. Ren, S. Ma, and M. Zhang, "Stretchable Temperature-Responsive Multimodal Neuromorphic Electronic Skin with Spontaneous Synaptic Plasticity Recovery", ACS Nano, Vol. 16, No. 5, pp. 8283- 8293, 2022. https://doi.org/10.1021/acsnano.2c02089
  37. T. Yang, W. Deng, X. Chu, X. Wang, Y. Hu, X. Fan, J. Song, Y. Gao, B. Zhang, and G. Tian, "Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics", ACS Nano, Vol. 15, No. 7, pp. 11555-11563, 2021. https://doi.org/10.1021/acsnano.1c01606
  38. Y. Chen, H. Lei, Z. Gao, J. Liu, F. Zhang, Z. Wen, and X. Sun, "Energy autonomous electronic skin with direct temperature-pressure perception", Nano Energy, Vol. 98, p. 107273, 2022.
  39. S. Wei, L. Liu, X. Huang, Y. Zhang, F. Liu, L. Deng, E. Bilotti, and G. Chen, "Flexible and Foldable Films of SWCNT Thermoelectric Composites and an S-Shape Thermoelectric Generator with a Vertical Temperature Gradient", ACS Appl. Mater. Interfaces, Vol. 14, No. 4, pp. 5973-5982, 2022. https://doi.org/10.1021/acsami.1c21363
  40. Y. Lee, J.W. Chung, G.H. Lee, H. Kang, J.-Y. Kim, C. Bae, H. Yoo, S. Jeong, H. Cho, and S.-G. Kang, "Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system", Sci. Adv., Vol. 7, No. 23, pp. eabg9180(1)- eabg9180(10), 2021.
  41. X. Wei, B. Wang, Z. Wu, and Z. L. Wang, "Open-Environment Tactile Sensing System: Towards Simple and Efficient Material Identification", Adv. Mater., p. 2203073, 2022.
  42. C. Li, D. Liu, C. Xu, Z. Wang, S. Shu, Z. Sun, W. Tang, and Z. L. Wang, "Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel", Nat. Commun., Vol. 12, No. 1, pp. 1-11, 2021. https://doi.org/10.1038/s41467-020-20314-w
  43. Y. Yao, Y. Chen, K. Wang, N. Turetta, S. Vitale, B. Han, H. Wang, L. Zhang, and P. Samori, "A robust vertical nanoscaffold for recyclable, paintable, and flexible light-emitting devices", Sci. Adv., Vol. 8, No. 10, pp. eabn2225(1)-eabn2225(9), 2022.
  44. Y. Roh, M. Kim, S.M. Won, D. Lim, I. Hong, S. Lee, T. Kim, C. Kim, D. Lee, and S. Im, "Vital signal sensing and manipulation of a microscale organ with a multifunctional soft gripper", Sci. Robot., Vol. 6, No. 59, p. eabi6774, 2021.
  45. D. Liu, D. Zhang, Z. Sun, S. Zhou, W. Li, C. Li, W. Li, W. Tang, and Z. L. Wang, "Active-Matrix Sensing Array Assisted with Machine-Learning Approach for Lumbar Degenerative Disease Diagnosis and Postoperative Assessment", Adv. Funct. Mater., Vol. 32, No. 21, p. 2113008, 2022.
  46. J. Hu, Y. Qiu, X. Wang, L. Jiang, X. Lu, M. Li, Z. Wang, K. Pang, Y. Tian, and W. Zhang, "Flexible six-dimensional force sensor inspired by the tenon-and-mortise structure of ancient Chinese architecture for orthodontics", Nano Energy, Vol. 96, p. 107073, 2022.
  47. J. Qin, X. Yang, C. Shen, Y. Chang, Y. Deng, Z. Zhang, H. Liu, C. Lv, Y. Li, and C. Zhang, "Carbon nanodot-based humidity sensor for self-powered respiratory monitoring", Nano Energy, Vol. 101, p. 107549, 2022.
  48. H. Ding, G. Lv, X. Cai, J. Chen, Z. Cheng, Y. Peng, G. Tang, Z. Shi, Y. Xie, and X. Fu, "An Optoelectronic thermometer based on microscale infrared-to-visible conversion devices", Light: Sci. Appl., Vol. 11, No. 1, pp. 1-8, 2022. https://doi.org/10.1038/s41377-021-00680-w
  49. S. Tachibana, Y.-F. Wang, T. Sekine, Y. Takeda, J. Hong, A. Yoshida, M. Abe, R. Miura, Y. Watanabe, and D. Kumaki, "A Printed Flexible Humidity Sensor with High Sensitivity and Fast Response Using a Cellulose Nanofiber/Carbon Black Composite", ACS Appl. Mater. Interfaces, Vol. 14, No. 4, pp. 5721-5728, 2022. https://doi.org/10.1021/acsami.1c20918
  50. J. Lee, S.J. Ihle, G.S. Pellegrino, H. Kim, J. Yea, C.-Y. Jeon, H.-C. Son, C. Jin, D. Eberli, and F. Schmid, "Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain", Nat. Electron., Vol. 4, No. 4, pp. 291-301, 2021. https://doi.org/10.1038/s41928-021-00557-1
  51. C. Y. Kim, M. J. Ku, R. Qazi, H. J. Nam, J. W. Park, K. S. Nam, S. Oh, I. Kang, J.-H. Jang, and W. Y. Kim, "Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics", Nat. Commun., Vol. 12, No. 1, pp. 1-13, 2021. https://doi.org/10.1038/s41467-020-20314-w
  52. H. Ouyang, Z. Li, M. Gu, Y. Hu, L. Xu, D. Jiang, S. Cheng, Y. Zou, Y. Deng, B. Shi, W. Hua, Y. Fan, Z. Li, and Z. Wang, "A Bioresorbable Dynamic Pressure Sensor for Cardiovascular Postoperative Care", Adv. Mater., Vol. 33, No. 39, p. 2102302, 2021.
  53. D. Lu, S. Li, Q. Yang, H.M. Arafa, Y. Xu, Y. Yan, D. Ostojich, W. Bai, H. Guo, C. Wu, S. Li, L. Jacobson, A. M. Westman, M. R. MacEwan, Y. Huang, M. Pet, and J. A. Rogers, "Implantable, wireless, self-fixing thermal sensors for continuous measurements of microvascular blood flow in flaps and organ grafts", Biosens.Bioelectron., Vol. 206, p. 114145, 2022.
  54. J. Li, Y. Liu, L. Yuan, B. Zhang, E.S. Bishop, K. Wang, J. Tang, Y.-Q. Zheng, W. Xu, S. Niu, L. Beker, T. L. Li, G. Chen, M. Diyaolu, A.-L. Thomas, V. Mottini, J. B. H. Tok, J. C. Y. Dunn, B. Cui, S. P. Pasca, Y. Cui, A. Habtezion, X. Chen, and Z. Bao, "A tissue-like neurotransmitter sensor for the brain and gut", Nat., Vol. 606, pp. 94-101, 2022. https://doi.org/10.1038/s41586-022-04615-2