• 제목/요약/키워드: Wearable electronic devices

검색결과 124건 처리시간 0.028초

레이저 유도에 의한 그래핀 합성 및 전기/전자 소자 제조 기술 (Laser Fabrication of Graphene-based Materials and Their Application in Electronic Devices)

  • 전상헌;박로운;정정화;홍석원
    • 마이크로전자및패키징학회지
    • /
    • 제28권1호
    • /
    • pp.1-12
    • /
    • 2021
  • 본 논문에서는 레이저 유도에 의한 그래핀 합성 기술 및 이를 이용한 전기/전자 소자 제조 기술과 다양한 소자 제조 기술을 검토하였다. 최근까지 개발되고 있는 3차원 그래핀 구조 활용으로 설계된 마이크로/나노 패턴화는 효율적인 제조공정으로 인하여 많은 각광을 받고 있으며, 차세대 기판 소재로의 응용까지 다양하게 개발되고 있다. 산업에서 요구하는 실제적인 적용 연구의 예들은, 레이저의 파장대역 선택, 출력 조정 및 광 간섭 기술 응용 등의 점진적인 해결방안 논의를 통해 큰 발전 가능성을 보여주고 있다. 기존의 그래핀의 전기/전자 소자 장치로의 응용 확장성은 이미 검증된 바 있으며, 새로운 합성 방식 및 기판 적용 기술은 마이크로 패키징 기술과의 통합 운용으로, 바이오센서, 슈퍼커패시터, 다공성 전기화학 센서 등 응용분야가 매우 다양하다. 본 논문에서 소개하는 레이저 기반 그래핀 가공 기술은 가까운 미래에 휴대형 소형 전자기기 및 전자 소자에 쉽게 적용 가능하리라 사료된다.

웨어러블 WBANs를 위한 에너지 효율적인 채널할당 MAC (Energy-efficient Channel Allocation MAC for Wearable WBANs)

  • 이정재;김인환
    • 한국전자통신학회논문지
    • /
    • 제11권11호
    • /
    • pp.1135-1140
    • /
    • 2016
  • 웨어러블 WBAN을 설계하는데 있어서 중요한 문제는 한정된 전지의 동력을 가지는 노드들의 저-전력 제약사항을 갖는 네트워크에서 QoS 요구사항의 균형을 보장하는 것이다. 인체에 이식된 저-전력 장치들은 그들의 한정된 전지수명으로 인해 최소한의 요구사항으로 제한되고 쉽게 착용할 수 있도록 적고 슬림해야 한다. 본 논문에서는 IEEE 802.15.6과 호환이 가능하고 휴지사이클 동안 에너지를 최대한 충전하며 WBAN의 QoS를 보장하고 네트워크 노드와 허브 들 간에 성공적인 패킷들의 수신을 제공하는 채널할당최적기법을 제안하고자 한다. 시뮬레이션을 통해서 제안된 방법은 패킷 전달과정에서 QoS를 극대화 하며 전송률과 에너지 효율 측면에서 향상됨을 보인다.

Stretchable and Foldable Electronics by Use of Printable Single-Crystal Silicon

  • 안종현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.29-29
    • /
    • 2008
  • Realization of electronics with performance equal to established technologies that use rigid semiconductor wafers, but in lightweight, foldable and stretchable formats would enable many new application possibilities. Examples include wearable systems for personal health monitoring, 'smart' surgical gloves with integrated electronics and electronic eye type imagers that incorporate focal plane arrays on hemispherical substrates. Circuits that use organic or certain classes of inorganic electronic materials on plastic or steel foil substrates can provide some degree of mechanical flexibility, but they cannot be folded or stretched. Also, with few exceptions such systems offer only modest electrical performance. In this talk, I will present a new approach to high performance, flexible and stretchable integrated circuits. These systems combine single-crystal silicon nanoribbons with thin plastic or elastomeric substrates using both "top-down" and "transfer-printing" technologies. The strategies represent promising routes to high performance, flexible and stretchable optoelectronic devices that can incorporate established, high performance inorganic electronic materials.

  • PDF

Current Development in Bio-implantable Sensors

  • Swarup, Biswas;Yongju, Lee;Hyojeong, Choi;Hyeok, Kim
    • 센서학회지
    • /
    • 제31권6호
    • /
    • pp.403-410
    • /
    • 2022
  • Flexible and wearable sensing technologies have emerged as a result of developments in interdisciplinary research across several fields, bringing together various subjects such as biology, physics, chemistry, and information technology. Moreover, various types of flexible wearable biocompatible devices, such customized medical equipment, soft robotics, bio-batteries, and electronic skin patches, have been developed over the last several years that are extensively employed to monitor biological signals. As a result, we present an updated overview of new bio-implantable sensor technologies for various applications and a brief review of the state-of-the-art technologies.

생체정보 진단을 위한 생체모사 계층구조 기반 피부 고점착 전자 패치 개발 (Development of bio-inspired hierarchically-structured skin-adhesive electronic patch for bio-signal monitoring)

  • 김다완
    • 문화기술의 융합
    • /
    • 제8권5호
    • /
    • pp.749-754
    • /
    • 2022
  • 다양한 의료 응용 분야에서 웨어러블 및 피부 부착형 전자 패치에 피부 표면의 높은 접착력과 내수성이 요구된다. 본 연구에서는 탄소 기반 전도성 고분자 복합 소재에 개구리 발바닥의 육각 채널와 문어 빨판의 흡착 구조 패턴을 모사한 신축성 있는 전자 패치를 보고한다. 개구리의 발바닥을 모사한 육각 채널 구조는 수분을 배수하며, 균열억제 효과를 통해 점착력을 향상 시키며, 문어 빨판을 모사한 흡착 구조는 젖은 표면에서 높은 점착력을 나타낸다. 또한 고점착 전자패치는 실리콘(max. 4.06 N/cm2), 피부 복제 표면(max. 1.84 N/cm2) 등 다양한 표면에 건조 및 젖은 조건에서 우수한 접착력을 가지고 있다. 고분자 매트릭스와 탄소 입자를 기반으로한 고분자 복합소재를 통해 제작된 고점착 전자 패치는 건조 및 습한 환경에서 심전도(ECG)을 안정적으로 감지할 수 있다. 이 연구에서 보여진 특성을 기반으로 제안된 전자 패치는 다양한 생체 신호의 진단을 위한 웨어러블 및 피부 부착 센서 디바이스를 구현하는 잠재적 응용 가능성을 제시한다.

FDM 3D프린팅 기반 유연굽힘센서 (Fused Deposition Modeling 3D Printing-based Flexible Bending Sensor)

  • 이선곤;오영찬;김주형
    • 한국기계가공학회지
    • /
    • 제19권1호
    • /
    • pp.63-71
    • /
    • 2020
  • Recently, to improve convenience, flexible electronics are quickly being developed for a number of application areas. Flexible electronic devices comprise characters such as being bendable, stretchable, foldable, and wearable. Effectively manufacturing flexible electronic devices requires high efficiency, low costs, and simple processes for manufacturing technology. Through this study, we enabled the rapid production of multifunctional flexible bending sensors using a simple, low-cost Fused Deposition Modeling (FDM) 3D printer. Furthermore, we demonstrated the possibility of the rapid production of a range of functional flexible bending sensors using a simple, low-cost FDM 3D printer. Accurate and reproducible functional materials made by FDM 3D printers are an effective tool for the fabrication of flexible sensor electronic devices. The 3D-printed flexible bending sensor consisted of polyurethane and a conductive filament. Two patterns of electrodes (straight and Hilbert curve) for the 3D printing flexible sensor were fabricated and analyzed for the characteristics of bending displacement. The experimental results showed that the straight curve electrode sensor sensing ability was superior to the Hilbert curve electrode sensor, and the electrical conductivity of the Hilbert curve electrode sensor is better than the straight curve electrode sensor. The results of this study will be very useful for the fabrication of various 3D-printed flexible sensor devices with multiple degrees of freedom that are not limited by size and shape.

Axillary temperature measurements based on smart wearable thermometers in South Korean children: comparison with tympanic temperature measurements

  • Choi, Younglee;Ahn, Hye Young
    • Child Health Nursing Research
    • /
    • 제28권1호
    • /
    • pp.62-69
    • /
    • 2022
  • Purpose: This study explored the validity of a new type of thermometer and parent satisfaction with the new device. This 24-hour continuous monitoring smart wearable wireless thermometer (TempTraq®) uses a very small semiconductor sensor with a thin patch-like shape. Methods: We obtained 397 sets of TempTraq® axillary temperatures and tympanic temperatures from 44 pediatric patients. Agreement between the axillary and tympanic measurements, as well as the validity of the TempTraq® axillary temperatures, were evaluated. Satisfaction surveys were completed by 41 caregivers after the measurements. Results: The TempTraq® axillary temperatures demonstrated a strong positive correlation with the tympanic temperatures. The Bland-Altman plot and analysis of TempTraq® axillary temperatures and tympanic temperatures showed that the mean difference was +0.45 ℃, the 95% limits of agreement were -0.57 to +1.46 ℃. Based on a tympanic temperature of 38 ℃, the results of validity of fever detection were sensitivity 0.85 and specificity 0.86. Satisfaction scores for TempTraq® temperature measurement were all > 4 points (satisfactory). Conclusion: TempTraq® smart axillary temperature measurement is an appropriate method for measuring children's temperatures since it was highly correlated to tympanic temperatures, had a reliable level of sensitivity and specificity, and could be used safely and conveniently.

Entangled-Mesh Graphene for Highly Stretchable Electronics

  • 한재현;여종석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.351.1-351.1
    • /
    • 2016
  • While conventional electronic devices have been fabricated on the rigid and brittle Si based wafer as a semiconducting substrate, future devices are increasingly finding applications where flexibility and stretchability are further integrated to enable emerging and wearable devices. To achieve high flexibility and stretchability, various approaches are investigated such as polymer based conducting composite, thin metal films on the polymer substrate, and structural modifications for stretchable electronics. In spite of many efforts, it is still a challenge to identify a solution that offers both high stretchability and superior electrical properties. In this paper, we introduce a highly stretchable entangled-mesh graphene showing a potential to address such requirements as stretchability and good electrical performance. Entangle-mesh graphene was synthesized by CVD graphene on the Cu foil. To analyze the mechanical properties of entangled-mesh graphene, endurance and stretching tester have been used.

  • PDF

Self-powered Sensors based on Piezoelectric Nanogenerators

  • Rubab, Najaf;Kim, Sang-Woo
    • 센서학회지
    • /
    • 제31권5호
    • /
    • pp.293-300
    • /
    • 2022
  • Flexible, wearable, and implantable electronic sensors have started to gain popularity in improving the quality of life of sick and healthy people, shifting the future paradigm with high sensitivity. However, conventional technologies with a limited lifespan occasionally limit their continued usage, resulting in a high cost. In addition, traditional battery technologies with a short lifespan frequently limit operation, resulting in a substantial challenge to their growth. Subsequently, utilizing human biomechanical energy is extensively preferred motion for biologically integrated, self-powered, functioning devices. Ideally suited for this purpose are piezoelectric energy harvesters. To convert mechanical energy into electrical energy, devices must be mechanically flexible and stretchable to implant or attach to the highly deformable tissues of the body. A systematic analysis of piezoelectric nanogenerators (PENGs) for personalized healthcare is provided in this article. This article briefly overviews PENGs as self-powered sensor devices for energy harvesting, sensing, physiological motion, and healthcare.

무선 압력센서를 이용한 실시간 맥박수 측정기 개발 (Development of Real-time Heart Rate Measurement Device Using Wireless Pressure Sensor)

  • 최상동;조성환;정연호
    • 한국전기전자재료학회논문지
    • /
    • 제29권5호
    • /
    • pp.284-288
    • /
    • 2016
  • Among the various physiological information that could be obtained from human body, heartbeat rate is a commonly used vital sign in the clinical milieu. Photoplethysography (PPG) sensor is incorporated into many wearable healthcare devices because of its advantages such as simplicity of hardware structure and low-cost. However, healthcare device employing PPG sensor has been issued in susceptibility of light and motion artifact. In this paper, to develop the real-time heart rate measurement device that is less sensitive to the external noises, we have fabricated an ultra-small wireless LC resonant pressure sensor by MEMS process. After performance evaluation in linearity and repeatability of the MEMS pressure sensor, heartbeat waveform and rate on radial artery were obtained by using resonant frequency-pressure conversion method. The measured data using the proposed heartbeat rate measurement system was validated by comparing it with the data of an commercialized heart rate measurement device. Result of the proposed device was agreed well to that of the commercialized device. The obtained real time heartbeat wave and rate were displayed on personal mobile system by bluetooth communication.