Browse > Article
http://dx.doi.org/10.6117/kmeps.2021.28.1.001

Laser Fabrication of Graphene-based Materials and Their Application in Electronic Devices  

Jeon, Sangheon (Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University)
Park, Rowoon (Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University)
Jeong, Jeonghwa (Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University)
Hong, Suck Won (Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.28, no.1, 2021 , pp. 1-12 More about this Journal
Abstract
Here, we introduce a laser-induced graphene synthesis technology and its applications for the electric/electronic device manufacturing process. Recently, the micro/nanopatterning technique of graphene has received great attention for the utilization of these new graphene structures, which shows progress developments at present with a variety of uses in electronic devices. Some examples of practical applications suggested a great potential for the tunable graphene synthetic manners through the control of the laser set-up, such as a selection of the wavelength, power adjustment, and optical techniques. This emerging technology has expandability to electric/electronic devices combined together with existed micro-packaging technology and can be integrated with the new processing steps to be applied for the operation in the fields of biosensors, supercapacitors, electrochemical sensors, etc. We believe that the laser-induced graphene technology introduced in this paper can be easily applied to portable small electronic devices and wearable electronics in the near future.
Keywords
graphene; laser; polyimide; 3D structure; wearable device;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S.-H. Lee, K.-Y. Kim, J.-R. Yoon, "Binder- and conductive additive-free laser-induced graphene/LiNi1/3Mn1/3Co1/3O2 for advanced hybrid supercapacitors", NPG Asia Mater., 1 (2020).
2 S. Kasap, I. I. Kaya, S. Repp, E. Erdem, "Superbat: batterylike supercapacitor utilized by graphene foam and zinc oxide (ZnO) electrodes induced by structural defects", Nanoscale Adv., 2586 (2019).   DOI
3 J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L.G. Samuel, M. J. Yacaman, B. I. Yakobson, J. M. Tour, "Laserinduced porous graphene films from commercial polymers", Nat. Commun., 5(1), 5714 (2014).   DOI
4 Y.-Q. Liu, Z.-D. Chen, J.-W. Mao, D.-D. Han, X. Sun, "Laser fabrication of graphene-based electronic skin", Front Chem., 7, 461, (2019).   DOI
5 H. Tian, Y. Yang, D. Xie, Y.-L. Cui, W.-T. Mi, Y. Zhang, T.-L. Ren, "Wafer-scale integration of graphene-based electronic, optoelectronic and electroacoustic devices wafer-scale integration of graphene-based electronic, optoelectronic and electroacoustic devices", Sci. Rep., 4, 3598 (2014).   DOI
6 M. Gamil, H. Nageh, I. Bkrey, S. Sayed, A. M. R. Fath ElBab, K. Nakamura, O. Tabata, A. A. El-Moneim, "Graphenebased strain gauge on a flexible substrate" Sens. Mater., 26, 9, 699-709 (2014).
7 B. Sun, R. N. McCay, S. Goswami, Y. Xu, C. Zhang, Y. Ling, J. Lin, Z. Yan, "Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugartemplated elastomer sponges", Adv. Mater., 30, 1804327 (2018).   DOI
8 H. Tian, H. Y. Chen, T. L. Ren, C. Li, Q. T. Xue, M. A. Mohammad, C. Wu, Y. Yang, H. S. Wong, "Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology", Nano Lett., 14, 3214 (2014).   DOI
9 R. D. Rodriguez, M. Bing, A. Ruban, S. Pavlov, A. A. Hamry, V. Prakash, M. Khan, G. Murastov, A. Mukherjee, Z. Khan, S. Shah, A. Lipovka, O. Kanoun, S. K. Mehta, E. Sheremet, "Reduced graphene oxide nanostructures by light: going beyond the diffraction limit", J. Phys. Conf. Ser., 1092, 012124 (2018).   DOI
10 L.-Q. Tao, H. Tian, Y. Liu, Z.-Y. Ju, Y. Pang, Y.-Q. Chen, D.-Y. Wang, X.-G. Tian, J.C. Yan, N.-Q. Deng, Y. Yang, T.-L. Ren, "An intelligent artificial throat with sound-sensing ability based on laser induced graphe", Nat. Commun., 8, 14579 (2017).   DOI
11 V. Strong, S. Dubin, M. F. El-Kady, A. Lech, Y. Wang, B. H. Weiller, R. B. Kaner, "Patterning and electronics tuning of laser scribed graphene for flexible all-carbon devices", ACS Nano, 6, 1395 (2012).   DOI
12 R. Song, X. Zhao, Z. Wang, H. Fu, K. Han, W. Qian,S. Wang, J. Shen, B. Mao, D. He, "Sandwiched graphene clad laminate: a binder-free flexible printed circuit board for 5G antenna application", Adv. Eng. Mater., 22, 2000451 (2020).   DOI
13 B. Han, Y.-L. Zhang, L. Zhu, X.-H. Chen, Z.-C. Ma, X.-L. Zhang, J.-N. Wang, W. Wang, Y.-Q. Liu, Q.-D. Chen, H.-B. Sun, "Direct laser scribing of AgNPs@RGO biochip as a reusable SERS sensor for DNA detectionSens", Sens. Actuators B Chem., 270, 500-507 (2008).   DOI
14 N. Q. Deng, H. Tian, Z. Y. Ju, H. M. Zhao, C. Li, M. A. Mohammad, L. Q. Tao, Y. Pang, X. F. Wang, T. Y. Zhang, Y. Yang, T. L. Ren, "Tunable graphene oxide reduction and graphene patterning at roomtemperature on arbitrary substrates", Carbon, 109, 173 (2016).   DOI
15 J. H. Lee, J. H. Shin, S. I. Lee, W. I. Park, "Review on Electric-field Transparent Conduct Electrodes Based on Nanomaterials", J. Microelectron. Packag. Soc., 27(1), 9-15 (2020).
16 L. X. Duy, Z. Peng, Y. Li, J. Zhang, Y. Ji, J. M. Tour, "Laser-induced graphene fibers", Carbon, 126, 472 (2018).   DOI
17 Y. Lu, H. Lyu, A. G. Richardson, T. H. Lucas, D. Kuzum, "Flexible neural electrode array based-on porous graphene for cortical microstimulation and sensing", Sci. Rep., 6, 33526 (2016).   DOI
18 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, "Graphene-based composite materials", Nature, 282 (2006).
19 S. W. Hong, F. Du, W. Lan, S. Kim, H. S. Kim, J. A. Rogers, "Monolithic integration of arrays of single-walled carbon nanotubes and sheets of graphene", Adv. Mater., 3821 (2011).   DOI
20 S. Jeon, P. Han, J. Jeong, W. S. Hwang, S. W. Hong, "Highly aligned polymeric nanowire etch-mask lithography enabling the integration of graphene nanoribbon transistors", Nanomaterials, 11, 33 (2021).
21 D. Yi, S. Jeon, S. W. Hong, "Selectively patterned regrowth of bilayer graphene for the self-Integrated electronics by sequential chemical vapor deposition", ACS Appl. Mater. Interfaces, 10, 40014 (2018).   DOI
22 P. R. Somani, S. P. Somani, M. Umeno, "Planer nano-graphene from camphor by CVD", Chem. Phys. Lett., 56 (2006).
23 A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, J. Kong, "Large area, few-layer graphene films on arbitrary subsrates by chemical vapor deposition", Nano Lett., 30 (2008).
24 Y. Yang, Y. Song, X. Bo, J. Min, O. S. Pak, L. Zhu, M. Wang, J. Tu, A. Kogan, H. Zhang,T. K. Hsiai, Z. Li, W. Gao, "A laser-engraved wearable sensor forsensitive detection of uric acid and tyrosine in sweat", Nat. Biotechnol., 38, 217-224 (2020).   DOI
25 S. Luo, P. T. Hoang, T. Li, "Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays", Carbon, 96, 552 (2016).
26 C. Fenzl, P. Nayak, T. Hirsch, O. S. Wolfbeis, H. N. Alshareef, A. J. Baeumner, "Laser-scribed graphene electrodes for aptamer-based biosensing", ACS Sens., 2, 616 (2017).   DOI
27 R. R. A. Soares, R. G. Hjort, C. C. Pola, K. Parate, E. L. Reis, N. F. F. Soares, E. S. McLamore, J. C. Claussen, C. L. Gomes, "Laser-induced graphene electrochemical immunosensors for rapid and label-free monitoring of salmonella enterica in chicken broth", ACS sensors, 5, 1900 (2020).   DOI
28 Z. Peng, J. Lin, R. Ye, E. L. G. Samuel, J. M. Tour, "Flexible and stackable laser induced graphene supercapacitors", ACS Appl. Mater. Interfaces, 7, 3414 (2015).   DOI
29 M. F. El-Kady, M. Ihns, M. Li, J. Y. Hwang, M. F. Mousavi, L. Chaney, A. T. Lech, R. B. Kaner, "Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage", Proc. Natl. Acad. Sci. U. S. A., 112, 4233 (2015).   DOI
30 S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, S. Iijima, "Rollto-roll production of 30-inch graphene films for transparent electrodes", Nat. Nanotechnol., 574 (2010).
31 F. Zou, H. Zhou, D. Y. Jeong, J. Kwon, S. U. Eom, T. J. Park, S. W. Hong, J. Lee, "Wrinkled surface-mediated antibacterial activity of graphene oxide nanosheets", ACS Appl. Mater. Interfaces, 9, 1343 (2017).   DOI
32 S. H. Kang, Y. C. Shin, E. Y. Hwang, J. H. Lee, C.-S. Kim, Z. Lin, S. H. Hur, D.-W. Han, S. W. Hong, "Engineered "coffee-rings" of reduced graphene oxide as ultrathin contact guidance to enable patterning of living cells", Mater. Horiz., 6, 1066 (2019).   DOI
33 D. G. Bae, J.-E. Jeong, S. H. Kang, M. Byun, D.-W. Han, Z. Lin, H. Y. Woo, S. W. Hong, "A nonconventional approach to patterned nanoarrays of DNA strands for template-assisted assembly of polyfluorene nanowires", Small, 12, 4254 (2016).   DOI
34 D. Kong, M. Kang, K. Y. Kim, J. Jang, J. Cho, J. B. In, H. Lee, "Hierarchically structured laser-induced graphene for enhanced boiling on flexible substrates", ACS Appl. Mater. Interfaces, 37784 (2020).   DOI
35 X. Zang, C. Shen, Y. Chu, B. Li, M. Wei, J. Zhong, M. Sanghadasa, L. Lin, "Laser-induced molybdenum carbide-graphene composites for 3D foldable paper electronics", Adv. Mater., 30, 1800062 (2018).   DOI
36 Y.-C. Qiao, Y.-H. Wei, Y. Pang, Y.-X. Li, D.-Y. Wang, Y.-T. Li, N.-Q. Deng, X.-F. Wang, H.-N. Zhang, Q. Wang, Z. Yang, L.-Q. Tao, H. Tian, Y. Yang, T.-L. Ren, "Graphene devices based on laser scribing technology", Jpn. J. Appl. Phys., 57, 04FA01, (2018).   DOI
37 W. Lu, S. Liu, X. Qin, L. Wang, J. Tian, Y. Luo, A. M. Asiri, A. O. Al-Youbi, X. Sun, "High-yield, large-scale production of few-layer graphene flakes within seconds: using chlorosulfonic acid and H2O2 as exfoliating agents", J. Mater. Chem., 8775 (2012).
38 D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, "The chemistry of graphene oxide", Chem. Soc. Rev., 228 (2010).
39 J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, J. M. Tour, "Laserinduced porous graphene films from commercial polymers", Nat. Commun., 5714 (2014).
40 D. T. Kuhnel, J. M. Rossiter, C. F. J. Faul, "Laser-scribed graphene oxide electrodes for soft electroactive devices", Adv. Mater. Technol., 4, 1800232 (2019).   DOI
41 Y. Yang, Y. Song, X. Bo, J. Min, O. S. Pak, L. Zhu, M. Wang, J. Tu, A. Kogan, H. Zhang, T. K. Hsiai, Z. Li, W. Gao, "A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat", Nat. Biotechnol., 217 (2020).
42 M. G. Stanford, C. Zhang, J. D. Fowlkes, A. Hoffman, I. N. Ivanov, P. D. Rack, J. M. Tour, "High-resolution laser-induced graphene. Flexible electronics beyond the visible limit", ACS. Appl. Mater. Interfaces, 10902 (2020).
43 L. Huang, J. Su, Y. Song, R. Ye, "Laser-induced graphene: en route to smart sensing", Nano-Micro Lett., 1 (2020).
44 L. Li, J. Zhang, Z. Peng, Y. Li, C. Gao, Y. Ji, R. Ye, N. D. Kim, Q. Zhong, Y. Yang, H. Fei, G. Ruan, J. M. Tour, "Highperformance pseudocapacitive microsupercapacitors from laser-induced graphene", Adv. Mater., 838 (2016).
45 A.A. Lahcen, S. Rauf, T. Beduk, C. Durmus, A. Aljedaibi, S. Timur, H.N. Alshareef, A. Amine, O.S. Wolfbeis, K.N. Salama, "Electrochemical sensors and biosensors using laser-derived graphene: a comprehensive review", Biosens. Bio-electron., 168, 112565 (2020).   DOI
46 J. Edberg, R. Brooke, O. Hosseinaei, A. Fall, K. Wijeratne, M. Sandberg, "Laser-induced graphitization of a forest-based ink for use in flexible and printed electronics", npj Flex. Electron., 4, 17 (2020).   DOI
47 T. Han, A. Nag, N. Afsarimanesh, S. C. Mukhopadhyay, S. Kundu, Y. Xu, "Laser-assisted printed flexible sensors: a review", Sensors, 19, 1462 (2019).   DOI
48 Y. Lu, H. Lyu, A. G. Richardson, T. H. Lucas, D. Kuzum, "Flexible neural electrode array based-on porous graphene for cortical microstimulation and sensing", Sci. Rep., 6, 33526 (2016).   DOI
49 Y. Zhou, Q. L. Bao, B. Varghese, L. A. L. Tang, C. K. Tan, C. H. Sow, K. P. Loh, "Microstructuring of graphene oxide nanosheets using direct laser writing", Adv. Mater., 67 (2010).
50 T. Beduk, A. A. Lahcen, N. Tashkandi, K. N. Salama, "Onestep electrosynthesized molecularly imprinted polymer on laser scribed graphene bisphenol a sensor", Sensor. Actuator. B Chem., 314 (2020).
51 D. Joo, S. Yoon, J. Kim, W.-T. Park, "Carbon strain sensor using Nd: YAG laser Direct Writing", J. Microelectron. Packag. Soc., 25(1), 35-40 (2018).   DOI
52 C. Yang, Y. Huang, H. Cheng, L. Jiang, L. Qu, "Rollable, stretchable, and reconfigurable graphene hygroelectric generators", Adv. Mater., 1805705, (2019).   DOI
53 W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, P. M. Ajayan, "Direct laser writing of micro-supercapacitors on hydrated graphite oxide films", Nat. Nanotechnol., 496 (2011).
54 R. You, Y.-Q. Liu, Y.-L. Hao, D.-D. Han, Y.-L. Zhang, Z. You, "Laser fabrication of graphene-based flexible electronics", Adv. Mater., 32, 1901981 (2020).   DOI
55 J. Cai, C. Lv, E. Aoyagi, S. Ogawa, A. Watanabe, "Laser Direct Writing of a High-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics", ACS Appl. Mater. Interfaces, 10, 23987 (2018).   DOI
56 L. Guo, Y. L. Zhang, D. D. Han, H. B. Jiang, D. Wang, X. B. Li, H. Xia, J. Feng, Q. D. Chen, H. B. Sun, "Laser-mediated programmable N doping and simultaneous reduction of graphene oxides", Adv. Opt. Mater., 120 (2014).
57 D. Konios, C. Petridis, G. Kakavelakis, M. Sygletou, K. Savva, E. Stratakis, E. Kymakis, "Reduced graphene oxide micromesh electrodes for large area, flexible, organic photovoltaic devices", Adv. Funct. Mater., 2213 (2015).
58 S. P. Singh, Y. Li, J. Zhang, J. M. Tour, C. J. Arnusch, "Sulfur-doped laser-induced porous graphene derived from polysulfone-class polymers and membranes", ACS Nano, 289 (2018).
59 M. R. Bobinger, F. J. Romero, A. Salinas-Castillo, M. Becherer, P. Lugli, D. P. Morales, N. Rodriguez, A. Rivadeneyra, "Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates", Carbon, 116 (2019).
60 X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, T. -L. Ren, "A spectrally tunable all-graphene-based flexible field-effect light-emitting device", Nat. Commun., 7767 (2015).   DOI
61 H. Xiao, Z. S. Wu, L. Chen, F. Zhou, S. Zheng, W. Ren, H. M. Cheng, X. Bao, "One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density", ACS Nano, 7284 (2017).
62 Y. L. Zhang, L. Guo, S. Wei, Y. Y. He, H. Xia, Q. D. Chen, H. B. Sun, F. S. Xiao, "Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction", Nano Today, 15 (2010).
63 R. Park, H. Kim, S. Lone, S. Jeon, Y. W. Kwon, B. Shin, S. W. Hong, "One-step laser patterned highly uniform reduced graphene oxide thin films for circuit-enabled tattoo and flexible humidity sensor application", Sensors, 1857 (2018).
64 Y. Zhao, Q. Han, Z. H. Cheng, L. Jiang, L. T. Qu, "Integrated graphene systems by laser irradiation for advanced devices", Nano Today, 14 (2017).
65 Y. Q. Liu, Y. L. Zhang, Y. Liu, H. B. Jiang, D. D. Han, B. Han, J. Feng, H. B. Sun, "Surface and interface engineering of graphene oxide films by controllable photoreduction", Chem. Rec., 1244 (2016).
66 R. Ye, D. K. James, J. M. Tour, "Laser-induced graphene: from discovery to translation", Adv. Mater., 1803621 (2019).   DOI
67 L. Cao, S. Zhu, B. Pan, X. Dai, W. Zhao, Y. Liu, W. Xie, Y. Kuang, X. Liu, "Stable and durable laser-induced graphene patterns embedded in polymer substrates", Carbon, 85 (2020).
68 W. Song, J. Zhu, B. Gan, S. Zhao, H. Wang, C. Li, J. Wang, "Flexible, stretchable, and transparent planar microsupercapacitors based on 3D porous laser-induced graphene", Small, 1702249 (2018).   DOI