• Title/Summary/Keyword: Wear simulator

Search Result 39, Processing Time 0.03 seconds

Development of Hot Rolling Wear Simulator and Roll Wear (강판의 열간윤활압연특성 연구I (열간압연마모 시험기의 개발과 시험))

  • 김철희
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.126-132
    • /
    • 1996
  • A laboratory scale hot strip rolling wear simulator(HRWS) was developed for the purpose of investigating the tribological phenomena occurred in production hot strip rolling mills. The HRWS' main parts are the electric heater, the mechanical descaler, tandem type 2-4Hi rolling mill stands, the cooling chamber, the tension controller and coiler. By simulating the tribelogical phenomena in rolling process at laboratory, wear patterns, cracks, cat-ear wear, black film, effect of hot rolling oil lubrication, etc. were reproduced, and discussed on the performace of simulator.

  • PDF

A Study on Wear and Wear Mechanism of Exhaust Valve and Seat Insert Depending on Different Speeds Using a Simulator

  • Hong, Jae-Soo;Chun, Keyoung-Jin;Youn, Young-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2052-2060
    • /
    • 2006
  • The wear of engine valve and seat insert is one of the most important factors which affect engine performance. Because of higher demands on performance and the increasing use of alternative fuel, engine valve and seat insert are challenged with greater wear problems than in the past. In order to solve the above problems, a simulator was developed to be able to generate and control high temperatures and various speeds during motion. The wear simulator is considered to be a valid simulation of the engine valve and seat insert wear process with various speeds during engine activity. This work focuses on the different degrees of wear at three different singular test speeds (10 Hz, 25 Hz & multi-Hz). For this study, the temperature of the outer surface of the seat insert was controlled at 350$^{\circ}C$, and the test load was 1960 N. The test cycle number was $6.0{\times}10^6$. The mean ($\pm$standard error) wear depth of the valve at 10 Hz and 25 Hz was 45.1 ($\pm$3.7)$\mu$m and 81.7 ($\pm$2.5)$\mu$m, respectively. The mean wear depth of the seat insert at 10 Hz and 25 Hz was 52.7 ($\pm$3.9)$\mu$m and 91.2 ($\pm$2.7)$\mu$m, respectively. In the case of multi-Hz it was 70.7 ($\pm$2.4)$\mu$m and 77.4 ($\pm$3.8)$\mu$m, respectively. It was found that higher speed (25 Hz) cause a greater degree of wear than lower speed (10 Hz) under identical test condition (temperature, valve displacement, cycle number and test load). In the wear mechanisms of valves, adhesive wear, shear strain and abrasive wear could be observed. Also, in the wear mechanisms of seat inserts, adhesive wear, surface fatigue wear and abrasive wear could be observed.

A Study on Engine Valve and Seat Insert Wearing Depending on Speed Change (속도변화에 따른 엔진 밸브 및 시트 인서트의 마모에 관한 연구)

  • 전경진;홍재수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.14-20
    • /
    • 2003
  • The minimization of valve and seat insert wear is a critical factor in the pursuit of engine performance improvement. In order to achieve this goal, we have developed a new simulator, which can generate and control high temperatures up to $900^{\circ}C$ and various speeds up to 80Hz during motion, just like an actual engine. The wear simulator is considered to be a valid simulation of the engine valve and seat insert wear process with various speeds during engine activity. The objective of this work focuses on the different degrees of wear from two different test speeds (10Hz & 25Hz). For this study, the temperature of the outer surface of the seat insert was controlled at $350^{\circ}C$, the cycle number was 2.1$\times$106, and the test load was 1960N. The wear depth and surface roughness were measured before and after the testing using a confocal laser scanner. It was found that a higher speed (25Hz) causes more wear than a lower speed (10Hz) under identical test conditions (temperature, cycle number and test load). In the wear mechanism adhesive wear, shear strain and abrasive wear could be observed.

Development of Hip Joint Simulator to Evaluate The Wear of Biomaterials Used in Total Hip Joint Replacement (인공고관절 생체재료 마멸평가를 위한 시뮬레이터 개발)

  • 이권용;윤재웅;전승범;박성길
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.265-270
    • /
    • 2001
  • Hip joint simulator which Is an essential device for evaluating the wear of biomaterials (ultrahigh molecular weight polyethylene, Co-Cr alloy, alumina, etc.) used in total hip joint replacement was developed. This hip joint simulator mimics the joint motion and joint loading of human gait by adapting the 4 degree of freedom in kinematic motion (flexing/extension, adduction/abduction, Internal rotation/external rotation) and axial loading, Four stations are operated by 8 servo-motors and harmony drives. Joint leading was imposed by displacement control from a ball screw, LM guide, and spring system. Each kinematic link system operates separately or coupled modes. A heater and a thermocouple were installed for keeping the body temperature in each station.

  • PDF

3D Wear Analysis of Valve Assemblies by Using the Machine Vision (머신비전을 이용한 밸브어셈블리의 3차원 마멸특성 분석)

  • Park Chang-Woo;Chung Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.496-504
    • /
    • 2006
  • Wear of engine valves and seat inserts is a major factor affecting engine performance. In order to improve quality and life of valve assemblies, wear mechanism and 3-D surface topography should be analyzed according to operating conditions of the engine. After developing an engine simulator that generates valve speed up to 90Hz and temperature up to $900^{\circ}C$ as well as controls test load, wear experiments have been conducted for two different engine speeds as 10Hz and 25Hz. In order to observe the wear characteristics and monitor surface conditions of the valve assemblies, a cost-effective 3-D wear analysis system based on the shape from focus(SFF) and machine vision has been fabricated in this paper. 3-D surface topography of the valve assemblies has been analyzed to understand the wear behavior according to operating conditions of the engine. Consequently, wear volume of the valve assemblies is quantized by using the developed 3-D wear analysis system.

Influence of zirconia and lithium disilicate tooth- or implant-supported crowns on wear of antagonistic and adjacent teeth

  • Rosentritt, Martin;Schumann, Frederik;Krifka, Stephanie;Preis, Verena
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • PURPOSE. To investigate the influence of crown material (lithium-disilicate, 3Y-TZP zirconia) and abutment type (rigid implant, resin tooth with artificial periodontium) on wear performance of their antagonist teeth and adjacent teeth. MATERIALS AND METHODS. A mandibular left first molar (#36) with adjacent human teeth (mandibular left second premolar: #35, mandibular left second molar: #37) and antagonistic human teeth (maxillary left second premolar: #25, maxillary left first molar: #26, maxillary left second molar: #27) was prepared simulating a section of the jaw. Samples were made with extracted human molars (Reference), crowned implants (Implant), or crowned resin tooth analogues (Tooth). Crowns (tooth #36; n = 16/material) were milled from lithium-disilicate (Li, IPS e.max CAD) or 3Y-TZP zirconia (Zr, IPS e.max ZirCAD, both Ivoclar Vivadent). Thermal cycling and mechanical loading (TCML) in the chewing simulator were applied simulating 15 years of clinical service. Wear traces were analyzed (frequency [n], depth [㎛]) and evaluated using scanning electron pictures. Wear results were compared by one-way-ANOVA and post-hoc-Bonferroni (α = 0.05). RESULTS. After TCML, no visible wear traces were found on Zr. Li showed more wear traces (n = 30-31) than the reference (n = 21). Antagonistic teeth #26 showed more wear traces in contact to both ceramics (n = 27-29) than to the reference (n = 21). Strong wear traces (> 350 ㎛) on antagonists and their adjacent teeth were found only in crowned groups. Abutment type influenced number and depth of wear facets on the antagonistic and adjacent teeth. CONCLUSION. The clinically relevant model with human antagonistic and adjacent teeth allowed for a limited comparison of the wear situation. The total number of wear traces and strong wear on crowns, antagonistic and adjacent teeth were influenced by crown material.

Assessment of Wear Resistance in Tooth-Colored Materials for Primary Molar Crown Restoration in Pediatric Dentistry

  • Hyun Seok Kang;Yooseok Shin;Chung-Min Kang;Je Seon Song
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.51 no.1
    • /
    • pp.22-31
    • /
    • 2024
  • The objective of this study was to assess the wear resistance of tooth-colored materials used in crown restoration for primary molars with a chewing simulator. In this study, four groups-three experimental groups and one control group-were included. They consisted of three-dimensional (3D) printed resin crowns (NextDent and Graphy), milled nano-hybrid ceramic crowns (MAZIC Duro), and prefabricated zirconia crowns (NuSmile). Twelve mandibular second molar specimens were prepared from each group. In the wear experiment, 6.0 × 105 cycles were conducted with a force of 50 N, and a 6 mm-diameter steatite ball was used as an antagonist. The amount of wear was calculated by comparing the scan files before and after the chewing simulation using 3D metrology software, and the worn cross-section was confirmed by scanning electron microscopy (SEM). The resin and ceramic groups did not exhibit any statistically significant differences. However, compared to other crown groups, the zirconia crown group demonstrated notably reduced levels of wear (p < 0.05). In SEM images, layers and cracks were observed in the 3D-printed resin crown groups, which differed from those in the other groups.

A Study of wear and Matching of Diesel Engine Exhaust Valve and Seat Insert Depending on Valve Materials (디젤엔진 배기밸브와 시트 인서트의 밸브 재질에 따른 마모 및 매칭성 연구)

  • Kim, Yang-Soo;Chun, Keyoung-Jin;Hong, Jae-Soo;Chung, Dong-Teak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.108-115
    • /
    • 2008
  • The wear on engine valve and seat insert is one of the most important factors affecting engine performance. The engine valve and seat insert must be able to withstand the severe environment that is created by: high temperature exhaust gases generated while the engine is running, rapid movement of the valve spring, high pressure generated in the explosive process. In order to study such problems, a simulator has been developed to generate and control high temperatures and various speeds during motion. The wear simulator is considered to be a valid simulation of the engine valve and seat insert wear process with various speeds during engine activity. This work focused on the test of various degrees of wear on four different exhaust valve materials such as HRV40, HRV40-FNV (face nitrided valve), STL #32, STL #6,. Throughout all tests performed in this study, the outer surface temperature of the seat insert was controlled at $350^{\circ}C$, the cycle number was $4.0{\times}10^6$, the test load was 6860 N, the fuel was LPG the test speed was 20 Hz (2400 RPM) and the seat insert material was HVS1-2. The mean (standard deviation) maximum roughness of the exhaust valve and seat insert was $25.44\;(3.16)\;{\mu}m$ and $27.53\;(3.60)\;{\mu}m$ at the HRV40, $21.58\;(2.38)\;{\mu}m$ and $25.94\;(3.07)\;{\mu}m$ at the HRV40-FNV, $36.73\;(8.98)\;{\mu}m$ and $61.38\;(7.84)\;{\mu}m$ at the STL #32, $73.64\;(23.80)\;{\mu}m$ and $60.80\;(13.49)\;{\mu}m$ at the STL #6, respectively. It was discovered that the maximum roughness of exhaust valve was lower as the high temperature hardness of the valve material was higher under the same test conditions such as temperature, test speed, cycle number, test load and seat insert material. The set of the HRV40-FNV exhaust valve and the HVS1-2 seat insert showed the best wear resistance.

A study on the in-vitro wear of the natural tooth structure by opposing zirconia or dental porcelain

  • Jung, Yu-Seok;Lee, Jae-Whang;Choi, Yeon-Jo;Ahn, Jin-Soo;Shin, Sang-Wan;Huh, Jung-Bo
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.3
    • /
    • pp.111-115
    • /
    • 2010
  • PURPOSE. This study was conducted to evaluate clinical validity of a zirconia full-coverage crown by comparing zirconia's wear capacity over antagonistic teeth with that of feldspathic dental porcelain. MATERIALS AND METHODS. The subject groups were divided into three groups: the polished feldspathic dental porcelain group (Group 1), the polished zirconia group (Group 2), and the polished zirconia with glazing group (Group 3). Twenty specimens were prepared from each group. Each procedure such as plasticity, condensation, and glazing was conducted according to the manufacturer's manual. A wear test was conducted with 240,000 chewing cycles using a dual-axis chewing simulator. The degree of wear of the antagonistic teeth was calculated by measuring the volume loss using a three-dimensional profiling system and ANSUR 3D software. The statistical significance of the measured degree of wear was tested with a significant level of 5% using one-way ANOVA and the Tukey test. RESULTS. The degrees of wear of the antagonistic teeth were $0.119{\pm}0.059\;mm^3$ in Group 1, $0.078{\pm}0.063\;mm^3$ in Group 3, and $0.031{\pm}0.033\;mm^3$ in Group 2. Statistical significance was found between Group 1 and Groups 2 and between Group 2 and 3, whereas no statistical significance was found between Group 1 and Group 3. CONCLUSION. Despite the limitations of this study on the evaluation of antagonistic teeth wear, the degree of antagonistic tooth wear was less in zirconia than feldspathic dental porcelain, representing that the zirconia may be more beneficial in terms of antagonistic tooth wear.