DOI QR코드

DOI QR Code

Influence of zirconia and lithium disilicate tooth- or implant-supported crowns on wear of antagonistic and adjacent teeth

  • Rosentritt, Martin (Department of Prosthetic Dentistry, UKR University Hospital Regensburg) ;
  • Schumann, Frederik (Department of Prosthetic Dentistry, UKR University Hospital Regensburg) ;
  • Krifka, Stephanie (Department of Prosthetic Dentistry, UKR University Hospital Regensburg) ;
  • Preis, Verena (Department of Prosthetic Dentistry, UKR University Hospital Regensburg)
  • Received : 2019.06.19
  • Accepted : 2020.01.23
  • Published : 2020.02.28

Abstract

PURPOSE. To investigate the influence of crown material (lithium-disilicate, 3Y-TZP zirconia) and abutment type (rigid implant, resin tooth with artificial periodontium) on wear performance of their antagonist teeth and adjacent teeth. MATERIALS AND METHODS. A mandibular left first molar (#36) with adjacent human teeth (mandibular left second premolar: #35, mandibular left second molar: #37) and antagonistic human teeth (maxillary left second premolar: #25, maxillary left first molar: #26, maxillary left second molar: #27) was prepared simulating a section of the jaw. Samples were made with extracted human molars (Reference), crowned implants (Implant), or crowned resin tooth analogues (Tooth). Crowns (tooth #36; n = 16/material) were milled from lithium-disilicate (Li, IPS e.max CAD) or 3Y-TZP zirconia (Zr, IPS e.max ZirCAD, both Ivoclar Vivadent). Thermal cycling and mechanical loading (TCML) in the chewing simulator were applied simulating 15 years of clinical service. Wear traces were analyzed (frequency [n], depth [㎛]) and evaluated using scanning electron pictures. Wear results were compared by one-way-ANOVA and post-hoc-Bonferroni (α = 0.05). RESULTS. After TCML, no visible wear traces were found on Zr. Li showed more wear traces (n = 30-31) than the reference (n = 21). Antagonistic teeth #26 showed more wear traces in contact to both ceramics (n = 27-29) than to the reference (n = 21). Strong wear traces (> 350 ㎛) on antagonists and their adjacent teeth were found only in crowned groups. Abutment type influenced number and depth of wear facets on the antagonistic and adjacent teeth. CONCLUSION. The clinically relevant model with human antagonistic and adjacent teeth allowed for a limited comparison of the wear situation. The total number of wear traces and strong wear on crowns, antagonistic and adjacent teeth were influenced by crown material.

Keywords

References

  1. Pathan MS, Kheur MG, Patankar AH, Kheur SM. Assessment of antagonist enamel wear and clinical performance of fullcontour monolithic zirconia crowns: One-year results of a prospective study. J Prosthodont 2019;28:e411-6. https://doi.org/10.1111/jopr.12960
  2. Rabel K, Spies BC, Pieralli S, Vach K, Kohal RJ. The clinical performance of all-ceramic implant-supported single crowns: A systematic review and meta-analysis. Clin Oral Implants Res 2018;29:196-223.
  3. Rauch A, Reich S, Dalchau L, Schierz O. Clinical survival of chair-side generated monolithic lithium disilicate crowns:10- year results. Clin Oral Investig 2018;22:1763-9. https://doi.org/10.1007/s00784-017-2271-3
  4. Ludovichetti FS, Trindade FZ, Werner A, Kleverlaan CJ, Fonseca RG. Wear resistance and abrasiveness of CAD-CAM monolithic materials. J Prosthet Dent 2018;120:318.e1-8.
  5. Hayashi S, Homma S, Takanashi T, Hirano T, Yoshinari M, Yajima Y. Wear properties of esthetic dental materials against translucent zirconia. Dent Mater J 2019;38:250-6. https://doi.org/10.4012/dmj.2018-133
  6. Chong BJ, Thangavel AK, Rolton SB, Guazzato M, Klineberg IJ. Clinical and laboratory surface finishing procedures for zirconia on opposing human enamel wear: A laboratory study. J Mech Behav Biomed Mater 2015;50:93-103. https://doi.org/10.1016/j.jmbbm.2015.06.007
  7. Preis V, Grumser K, Schneider-Feyrer S, Behr M, Rosentritt M. Cycle-dependent in vitro wear performance of dental ceramics after clinical surface treatments. J Mech Behav Biomed Mater 2016;53:49-58. https://doi.org/10.1016/j.jmbbm.2015.08.009
  8. Preis V, Behr M, Handel G, Schneider-Feyrer S, Hahnel S, Rosentritt M. Wear performance of dental ceramics after grinding and polishing treatments. J Mech Behav Biomed Mater 2012;10:13-22. https://doi.org/10.1016/j.jmbbm.2012.03.002
  9. D'Arcangelo C, Vanini L, Rondoni GD, Vadini M, De Angelis F. Wear evaluation of prosthetic materials opposing themselves. Oper Dent 2018;43:38-50. https://doi.org/10.2341/16-212-L
  10. D'Arcangelo C, Vanini L, Rondoni GD, De Angelis F. Wear properties of dental ceramics and porcelains compared with human enamel. J Prosthet Dent 2016;115:350-5. https://doi.org/10.1016/j.prosdent.2015.09.010
  11. Gou M, Chen H, Kang J, Wang H. Antagonist enamel wear of tooth-supported monolithic zirconia posterior crowns in vivo: A systematic review. J Prosthet Dent 2019;121:598-603. https://doi.org/10.1016/j.prosdent.2018.06.005
  12. Wiegand A, Crede A, Tschammler C, Attin T, Taubock TT. Enamel wear by antagonistic restorative materials under erosive conditions. Clin Oral Investig 2017;21:2689-93. https://doi.org/10.1007/s00784-017-2071-9
  13. Fathy SM, Swain MV. In-vitro wear of natural tooth surface opposed with zirconia reinforced lithium silicate glass ceramic after accelerated ageing. Dent Mater 2018;34:551-9. https://doi.org/10.1016/j.dental.2017.12.010
  14. Zheng J, Zeng Y, Wen J, Zheng L, Zhou Z. Impact wear behavior of human tooth enamel under simulated chewing conditions. J Mech Behav Biomed Mater 2016;62:119-27. https://doi.org/10.1016/j.jmbbm.2016.04.039
  15. Nakashima J, Taira Y, Sawase T. In vitro wear of four ceramic materials and human enamel on enamel antagonist. Eur J Oral Sci 2016;124:295-300. https://doi.org/10.1111/eos.12272
  16. Zandparsa R, El Huni RM, Hirayama H, Johnson MI. Effect of different dental ceramic systems on the wear of human enamel: An in vitro study. J Prosthet Dent 2016;115:230-7. https://doi.org/10.1016/j.prosdent.2015.09.005
  17. Lee A, Swain M, He L, Lyons K. Wear behavior of human enamel against lithium disilicate glass ceramic and type III gold. J Prosthet Dent 2014;112:1399-405. https://doi.org/10.1016/j.prosdent.2014.08.002
  18. Hartkamp O, Lohbauer U, Reich S. Antagonist wear by polished zirconia crowns. Int J Comput Dent 2017;20:263-74.
  19. Esquivel-Upshaw JF, Kim MJ, Hsu SM, Abdulhameed N, Jenkins R, Neal D, Ren F, Clark AE. Randomized clinical study of wear of enamel antagonists against polished monolithic zirconia crowns. J Dent 2018;68:19-27. https://doi.org/10.1016/j.jdent.2017.10.005
  20. Yang SW, Kim JE, Shin Y, Shim JS, Kim JH. Enamel wear and aging of translucent zirconias: In vitro and clinical studies. J Prosthet Dent 2019;121:417-25. https://doi.org/10.1016/j.prosdent.2018.04.016
  21. Lohbauer U, Reich S. Antagonist wear of monolithic zirconia crowns after 2 years. Clin Oral Investig 2017;21:1165-72. https://doi.org/10.1007/s00784-016-1872-6
  22. Rashid H, Sheikh Z, Misbahuddin S, Kazmi MR, Qureshi S, Uddin MZ. Advancements in all-ceramics for dental restorations and their effect on the wear of opposing dentition. Eur J Dent 2016;10:583-8. https://doi.org/10.4103/1305-7456.195170
  23. Rosentritt M, Behr M, Scharnagl P, Handel G, Kolbeck C. Influence of resilient support of abutment teeth on fracture resistance of all-ceramic fixed partial dentures: an in vitro study. Int J Prosthodont 2011;24:465-8.
  24. Scharnagl P, Behr M, Rosentritt M, Leibrock A, Handel G. Simulation of physiological tooth mobility in in-vitro stress examination of dental restorations in the masticator. J Dent Res 1998;77:1260.
  25. Rosentritt M, Behr M, van der Zel JM, Feilzer AJ. Approach for valuating the influence of laboratory simulation. Dent Mater 2009;25:348-52. https://doi.org/10.1016/j.dental.2008.08.009
  26. Rosentritt M, Siavikis G, Behr M, Kolbeck C, Handel G. Approach for valuating the significance of laboratory simulation. J Dent 2008;36:1048-53. https://doi.org/10.1016/j.jdent.2008.09.001
  27. Lambrechts P, Braem M, Vuylsteke-Wauters M, Vanherle G. Quantitative in vivo wear of human enamel. J Dent Res 1989;68:1752-4. https://doi.org/10.1177/00220345890680120601
  28. Preis V, Weiser F, Handel G, Rosentritt M. Wear performance of monolithic dental ceramics with different surface treatments. Quintessence Int 2013;44:393-405.
  29. Lawson NC, Janyavula S, Syklawer S, McLaren EA, Burgess JO. Wear of enamel opposing zirconia and lithium disilicate after adjustment, polishing and glazing. J Dent 2014;42:1586-91. https://doi.org/10.1016/j.jdent.2014.09.008
  30. Rosentritt M, Schneider-Feyrer S, Behr M, Preis V. In vitro shock absorption tests on implant-supported crowns: Influence of crown materials and luting agents. Int J Oral Maxillofac Implants 2018;33:116-22. https://doi.org/10.11607/jomi.5463
  31. Tsumita M, Kokubo Y, Ohkubo C, Sakurai S, Fukushima S. Clinical evaluation of posterior all-ceramic FPDs (Cercon): a prospective clinical pilot study. J Prosthodont Res 2010;54:102-5. https://doi.org/10.1016/j.jpor.2010.01.001
  32. Teichmann M, Wienert AL, Ruckbeil M, Weber V, Wolfart S, Edelhoff D. Ten-year survival and chipping rates and clinical quality grading of zirconia-based fixed dental prostheses. Clin Oral Investig 2018;22:2905-15. https://doi.org/10.1007/s00784-018-2378-1
  33. Schmitter M, Mueller D, Rues S. Chipping behaviour of allceramic crowns with zirconia framework and CAD/CAM manufactured veneer. J Dent 2012;40:154-62. https://doi.org/10.1016/j.jdent.2011.12.007
  34. Rosentritt M, Preis V, Behr M, Hahnel S, Handel G, Kolbeck C. Two-body wear of dental porcelain and substructure oxide ceramics. Clin Oral Investig 2012;16:935-43. https://doi.org/10.1007/s00784-011-0589-9
  35. Preis V, Behr M, Kolbeck C, Hahnel S, Handel G, Rosentritt M. Wear performance of substructure ceramics and veneering porcelains. Dent Mater 2011;27:796-804. https://doi.org/10.1016/j.dental.2011.04.001
  36. Preis V, Grumser K, Schneider-Feyrer S, Behr M, Rosentritt M. The effectiveness of polishing kits: influence on surface roughness of zirconia. Int J Prosthodont 2015;28:149-51. https://doi.org/10.11607/ijp.4153
  37. Preis V, Schmalzbauer M, Bougeard D, Schneider-Feyrer S, Rosentritt M. Surface properties of monolithic zirconia after dental adjustment treatments and in vitro wear simulation. J Dent 2015;43:133-9. https://doi.org/10.1016/j.jdent.2014.08.011
  38. Bartolo D, Cassar G, Al-Haj Husain N, Ozcan M, Camilleri J. Effect of polishing procedures and hydrothermal aging on wear characteristics and phase transformation of zirconium dioxide. J Prosthet Dent 2017;117:545-51. https://doi.org/10.1016/j.prosdent.2016.09.004
  39. Al-Haj Husain N, Camilleri J, Ozcan M. Effect of polishing instruments and polishing regimens on surface topography and phase transformation of monolithic zirconia: An evaluation with XPS and XRD analysis. J Mech Behav Biomed Mater 2016;64:104-12. https://doi.org/10.1016/j.jmbbm.2016.07.025
  40. Al-Haj Husain N, Ozcan M. A study on topographical properties and surface wettability of monolithic zirconia after use of diverse polishing instruments with different surface coatings. J Prosthodont 2018;27:429-42. https://doi.org/10.1111/jopr.12515
  41. Alghazzawi TF, Lemons J, Liu PR, Essig ME, Bartolucci AA, Janowski GM. Influence of low-temperature environmental exposure on the mechanical properties and structural stability of dental zirconia. J Prosthodont 2012;21:363-9. https://doi.org/10.1111/j.1532-849X.2011.00838.x
  42. Salazar Marocho SM, Studart AR, Bottino MA, Bona AD. Mechanical strength and subcritical crack growth under wet cyclic loading of glass-infiltrated dental ceramics. Dent Mater 2010;26:483-90. https://doi.org/10.1016/j.dental.2010.01.007
  43. Zhang Y, Song JK, Lawn BR. Deep-penetrating conical cracks in brittle layers from hydraulic cyclic contact. J Biomed Mater Res B Appl Biomater 2005;73:186-93. https://doi.org/10.1002/jbm.b.30195

Cited by

  1. Hybrid-abutment-restoration: effect of material type on torque maintenance and fracture resistance after thermal aging vol.6, 2020, https://doi.org/10.1186/s40729-020-00220-y
  2. The One-Year In Vivo Comparison of Lithium Disilicate and Zirconium Dioxide Inlays vol.14, pp.11, 2021, https://doi.org/10.3390/ma14113102