• Title/Summary/Keyword: Wear rate

Search Result 1,074, Processing Time 0.027 seconds

An Application of Fuzzy Logic with Desirability Functions to Multi-response Optimization in the Taguchi Method

  • Kim Seong-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.183-188
    • /
    • 2005
  • Although it is widely used to find an optimum setting of manufacturing process parameters in a variety of engineering fields, the Taguchi method has a difficulty in dealing with multi-response situations in which several response variables should be considered at the same time. For example, electrode wear, surface roughness, and material removal rate are important process response variables in an electrical discharge machining (EDM) process. A simultaneous optimization should be accomplished. Many researches from various disciplines have been conducted for such multi-response optimizations. One of them is a fuzzy logic approach presented by Lin et al. [1]. They showed that two response characteristics are converted into a single performance index based upon fuzzy logic. However, it is pointed out that information regarding relative importance of response variables is not considered in that method. In order to overcome this problem, a desirability function can be adopted, which frequently appears in the statistical literature. In this paper, we propose a novel approach for the multi-response optimization by incorporating fuzzy logic into desirability function. The present method is illustrated by an EDM data of Lin and Lin [2].

Analysis of Damage Patterns for Gas Turbine Combustion Liner according to Model Change (모델 변천에 따른 가스터빈 연소기 라이너의 부위별 손상유형 분석)

  • Kim, Moon-Young;Yang, Sung-Ho;Park, Sang-Yeol;Kim, Sang-Hoon;Park, Hye-Sook;Won, Jong-Beom
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2862-2867
    • /
    • 2008
  • High-temperature components of gas turbine operated for certain period of time can be reused by being repaired or rejuvenated. In case of the gas turbine combustion liners, the biggest and the most important one in the high-temperature components, come in a repair shop after operated for 8,000 or 12,000 hours according to the model and go through the repair and rejuvenation in order to be reused. A stated combustion liner is the first channel which has the combustion gas reached a nozzle from a fuel nozzle. Materials and coating properties of old and new model combustion liners were investigated. To repair these components after the visual inspection, the coatings of combustion liners were removed and then FPI(Fluorescent Penetrant Inspection), a kind of the NDI(Non-Destructive Inspection), was conducted. Damage patterns and the number of the damaged components were classified and analyzed based on data provided from the visual inspection over a long period of time. Focusing on the difference between old model and new model combustion liners, we analyzed the damage distribution and changes and consequently concluded that new model combustion liner would increase repair rate.

  • PDF

Development of combustion zone monitoring system for a blast furnace (용광로 연소대 관리시스템 개발)

  • Choi, Tae-Hwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.318-322
    • /
    • 1997
  • A prototype of combustion zone monitoring system as been developed and installed into tuyeres of the blast furnace. The system consists of CCD(charge coupled device) cameras, sonic flow meters, an image processor and a personal computer. The personal computer collects raceway luminance data and operational data from the image processor that is connected to the color CCD camera from the blast furnace process computer, respectively. In addition, the sonic flow meters supply coal injection rate data to the personal computer. Then, the personal computer evaluates the combustion conditions with the raceway inspection algorithm. This integrated monitoring system allows us to detect abnormal raceway conditions and the clogging status of coal injection pipe. The image processing techniques of the system enable us to effectively monitor unburnt coal sticking to tuyere tip and injection lance wear conditions. Such a developed system ensures rapid and precise raceway inspection. The image processing capability of the system has helped operator to early detect both the unburnt coal sticking problem and the errosion problem of injection lance. Furthermore, the system could control the abnormal raceway condition based the the analysis results obtained from combustion monitoring.

  • PDF

Laser Assisted Surface Alloying of Cast Iron with Thermal Sprayed Titanium Coatings (티타늄 용사피막을 이용한 주철의 레이저 표면합금화)

  • Park, Heung-Il;Kim, Sung-Gyoo;Lee, Byung-Woo
    • Journal of Korea Foundry Society
    • /
    • v.17 no.4
    • /
    • pp.393-401
    • /
    • 1997
  • Commercial flake graphite cast iron substrate was coated with titanium powder by low pressure plasma spraying and was irradiated with a $CO_2$ laser to produce the wear resistant composite layer. From the experimental results of this study, it was possible to composite TiC particles on the surface layer by direct reaction between carbon existed in the cast iron matrix and titanium with thermal sprayed coating by remelting and alloying them using laser irradiation. The cooling rate of laser remelted cast iron substrate without titanium coating was about $1{\times}10^4$ K/s to $1{\times}10^5$ K/s in the order under the condition used in this study. The microstructure of alloyed layer consisted of three zones, that is, TiC particule crystallized zone (MHV $400{\sim}500$), the mixed zone of TiC particule+ledebulite (MHV $650{\sim}900$) and the ledebulite zone (MHV $500{\sim}700$). TiC particules were crystallized as a typical dendritic morphology. The secondary TiC dendrite arms were grown to the polygonized shape and were necking. And then the separated arms became cubic crystal of TiC at the slowly solidified zone. But in the rapidly solidified zone of fusion boundry, the fine granular TiC particules were grouped like grape.

  • PDF

Load Relaxation and Creep Transition Behavior of a Spray Casted Hypereutectic Al-Si Alloy (분무 주조 과공정 Al-Si 계 합금의 응력이완 및 Creep 천이 거동)

  • Kim M. S.;Bang W.;Park W. J.;Chang Y. W.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.502-508
    • /
    • 2005
  • Hypereutectic Al-Si alloys have been regarded attractive for automotive and aerospace application, due to high specific strength, good wear resistance, high thermal stability, low thermal expansion coefficient and good creep resistance. Spray casting of hypereutectic Al-Si alloy has been reported to provide distinct advantages over ingot metallurgy (IM) or rapid solidification/powder metallurgy (RS/PM) process in terms of microstructure refinement. In this study, hypereutectic Al-25Si-2.0Cu-1.0Mg alloy was prepared by OSPREY spray casting process. The change of strain rate sensitivity and Creep transition were analyzed by using the load relaxation test and constant creep test. High temperature deformation behavior of the hypereutectic Al-Si alloy has been investigated by applying the internal variable theory proposed by Chang et al. Especially, the creep resistance of spray casted hypereutectic Al-Si alloy can be enhanced considerably by the accumulation of prestrain.

Effects of Insert Materials of Retaining Ring on Polishing Finish in Oxide CMP (산화막 CMP에서 리테이닝 링의 인서트 재질이 연마정밀도에 미치는 영향)

  • Park, Ki-Won;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.44-50
    • /
    • 2019
  • CMP is the most critical process in the manufacture of silicon wafers, and the use of retaining rings, which are consumable parts used in CMP equipment, is increasingly important. Since the retaining ring is made of plastic, it is not only weak in strength but also has the problem of taking a long time for the flattening operation of the ring itself performed before the CMP process, and of the imbalance of force due to bolt tightening causing uneven wear. In order to solve this problem, the retaining ring and the insert ring are integrally used, and the flatness of the retaining ring may be affected depending on the material of the insert ring. Also, the residual stress generated in the manufacturing process of the insert ring may cause distortion of the ring, which may adversely affect the precision polishing. In this study, when the insert ring is made of Zn or STS304, the thickness variation and the flatness of the retaining ring are compared and, finally, the material removal rate is analyzed by polishing the wafer by the oxide CMP process. Through these experiments, the effects of the insert ring material on the polishing accuracy of the wafers were investigated.

Suggestion of Test Apparatus for Reliability Evaluation of a Rotary Compressor with a Short-Cycle (로터리 압축기용 Short-Cycle 신뢰성 시험장치 제안)

  • Lee, Tae-Gu;Lee, Sang-Jae;Kim, Hyun-Woo;Kim, Sang-Hyun;Lee, Jae-Heon;Yoo, Ho-Seon
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.584-589
    • /
    • 2006
  • In this paper, a test apparatus for reliability evaluation of a rotary compressor has been suggested with a short-cycle concept. $CO_2$ refrigerant is adopted for this cycle to avoid phase change during cycle operation. Evaporator is not necessary in short-cycle. Utilizing a short-cycle, the test apparatus was built on the purpose of evaluating the reliability of each rotary compressor on the conveyer belt of the factory. The primary validation of the test apparatus is discussed by analyzing the experimental heat balance data. Additional validation was performed through the overload continuous operation test where the wear rate of the $CO_2$ short-cycle was found to similar to that of the R22 normal-cycle. The reliability evaluation test apparatus with a short-cycle in present investigation was found simple and efficient in the view of reducing sample numbers, costs, and test time in analyzing the reliability of rotary compressors.

  • PDF

Microstructural Control of Al-Sn Alloy with Addition of Cu and Si (Cu와 Si 첨가에 의한 Al-Sn 합금의 미세조직 제어)

  • Son, Kwang Suk;Park, Tae Eun;Kim, Jin Soo;Kang, Sung Min;Kim, Tae Hwan;Kim, Donggyu
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.248-255
    • /
    • 2010
  • The effect of various alloying elements and melt treatment on the microstructural control of Al-Sn metallic bearing alloy was investigated. The thickness of tin film crystallized around primary aluminum decreased with the addition of 5% Cu in Al-Sn alloy, with tin particles being reduced in size by intervening the Ostwald ripening. With the addition of Si in Al-10%Sn alloy, the tin particles were crystallized with eutectic silicon, resulting in uniform distribution of tin particles. With the addition of Cu and Si in Al-Sn alloy, both the tensile strength and yield strength increased, with the increasing rate of yield strength being less than that of tensile strength. Although the Al-10%Sn-7%Si alloy has similar tensile strength compared with Al-10%Sn-5%Cu, the former showed superior abrasion resistance, resulting from preventing the tin particles from movement to the abrasion surface.

A study on the detection of misalignment between piercing punch and die using a bolt-type piezo sensor (볼트형 피에조 센서를 활용한 피어싱 펀치의 얼라인먼트 불량 검출에 관한 연구)

  • Jeon, Yong-Jun;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.51-56
    • /
    • 2021
  • Piercing is the process of shearing a circular hole in sheet metal, whose high shear force makes it difficult to secure the durability of tools. In addition, uneven clearance between tools due to poor alignment of the piercing punch causes accelerated die wear and breakage of the tool. This study reviewed the feasibility of in-situ determining alignment failure during the piercing process by analyzing the signal deviation of a bolt-type piezo sensor installed inside the tool whose alignment level was controlled. Finite element analysis was performed to select the optimal sensor location on the piercing tool for sensitive detection of process signals. A well-aligned piercing process results in uniform deformation in the circumferential direction, and shearing is completed at a stroke similar to the sheet thickness. Afterward, a sharp decrease in shear load is observed. The misaligned piecing punch leads to a gradual decrease in the load after the maximum shear load. This gradual decrease is due to the progressive shear deformation that proceeds in the circumferential direction after the initial crack occurs at the narrow clearance site. Therefore, analyzing the stroke at which the maximum shear load occurs and the load reduction rate after that could detect the misalignment of the piercing punch in real-time.

Selection of Optimal Processing Conditions for Quartz Using the Taguchi Method (다구찌법을 이용한 석영의 최적 가공조건 선정에 관한 연구)

  • Jeong, Ho-In;Choi, Seong-Jun;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.123-129
    • /
    • 2022
  • Quartz (SiO2) has high abrasion and heat resistances and excellent chemical and mechanical properties; therefore, it is used in various industries, such as machinery, chemistry, optics, and medicine. Quartz is a high-hardness and brittle material and is classified as the topmost difficult-to-cut material, which is because of the cracking or chipping at the edge during processing. Corner wear, such as cracks and chippings that occur during cutting, is a major cause for the deterioration in the machining quality. Therefore, many researchers are investigating various techniques to process quartz effectively. However, owing to the mechanical properties of quartz, most studies have been conducted on grinding, micromachining, and microdrilling. Few studies have been conducted on quartz processing. The purpose of this study was to analyze the machining characteristics according to the machining factors during the slot machining of quartz using a cubic boron nitride (CBN) tool and to select the optimal machining conditions using the Taguchi method. The machining experiment was performed considering three process variables: the spindle speed, feed rate, and depth of cut. The cutting force and surface roughness were analyzed according to the processing conditions.