• Title/Summary/Keyword: Wear of Ceramic

Search Result 352, Processing Time 0.038 seconds

Investigations of DLC Films for Protection of Organic Photoconductors in Electrophotography

  • Ko, Myoung-Wan;Kim, Seong-Young;Shin, Seoung-Yong;Lee, Sang-Hyun;Akihiro Tanaka;Kazunori Umeda;Kazuyuki Mizuhara
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.88-91
    • /
    • 1997
  • The diamondlike (DLC) films were deposited by RF plasma CVD system which had cathode consisting of mesh sheet, for the purpose of a protection from wear of OPC surface of the electrophotographic photosensitive body. Material charateristics and tribological properties of the films were also investigated and finally copying performance was evaluated with DLC deposited OPC samples. The surface resistance of the DLC film unaffected by the surface potential of the OPC was about $10^{11}{\Omega}$ and its hardness was about 1200 kg/$\textrm{mm}^2$. In this case the film showed typical material strcture of dimondlike hydrocarbon. The friction coefficient of the film was lowered to 0.2~0.3 at the optimum condition in this investigation and their wear resistant was inproved by DLC-deposition on the OPC surface. DLC-deposited OPC samples with a good copying performance without image flow and draft could be obtained at some depositing conditions.

  • PDF

A Study on Micro Ultrasonic machining for Brittle Material Using Ultrasonic vibration (초음파 진동을 이용한 취성재료 가공기술에 관한 연구)

  • 이석우;최헌종;이봉구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.969-972
    • /
    • 1997
  • Ultrasonic machining technology has been developed over recent years for he manufacture of cost-effective and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile application. The past decade has seen a tremendous in the use of ceramic in structural application. The excellent thermal, chemical and wear resistance of these material can be realized because of recent improvement in the overall strength and uniformity of advanced ceramics. Ultrasonic machining, in which abrasive particles in slurry with water are presented to the work surface in the presence of an ultrasonic-vibrating tool, is process which should be of considerable interest, as its potential is not limited by he electrical or chemical characteristics of the work material, making it suitable for application to ceramics. In order to improve the currently used ultrasonic machining using ultrasonic energy, technical accumulation is needed steadily through development of exciting device of ultrasonic machine composed of piezoelectric vibrator and horn. This paper intends to further the understanding of the basic mechanism of ultrasonic machining for brittle material and ultrasonic machining of ceramics based in the fracture-mechanic concept has been analyzed.

  • PDF

A Study on Micro Ultrasonic machining for Brittle Material Using Ultrasonic vibration (초음파 진동을 이용한 취성재료의 가공기술에 관한 연구)

  • Lee Seok-Woo;Choi Heon-Jong;Yi Bong-Gu
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.245-252
    • /
    • 2002
  • Ultrasonic machining technology has been developed over recent years for the manufacture of cost-effective and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile. Ultrasonic machining process is an efficient and economical means of precision machining of ceramic materials. The process is non-thermal, non-chemical and non-electric md hardly creates changes to the mechanical properties of the brittle materials machined. This paper describes the characteristics of the micro-hole of $Al_2O_3$ by ultrasonic machining with tungsten carbide tool. The effects of various parameters of ultrasonic machining, including abrasives, machining force and pressure, on the material removal rate, hole quality, and tool wear presented and discussed. The ultrasonic Machining of micro-holes in ceramics has been under taken and the machining mechanism in the ultrasonic machining of ceramics based on the fracture-mechanics concept has been analyzed.

  • PDF

Nozzle Condition Monitoring System for Abrasive Waterjet Process (연마재 워터젯을 위한 노즐상태 모니터링 시스템 설계)

  • Kim, Jeong-Uk;Kim, Roh-Won;Kim, Chul-Min;Kim, Sung-Ryul;Kim, Hyun-Hee;Lee, Kyung-Chang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.817-823
    • /
    • 2020
  • In recent, the machining of difficult-to-cut materials such as titanium alloys, stainless steel, Inconel, ceramic, glass, and carbon fiber reinforced plastics (CFRP) used in aerospace, automobile, medical industry is actively researched. Abrasive waterjet is a non-traditional processing method in which ultra-high pressure water and abrasive particles are mixed in a mixing chamber and shoot out jet through a nozzle, and removed by erosion due to collision with a material. In particular, the nozzle of the abrasive waterjet is one of the most important parts that affect the machining quality as with a cutting tool in general machining. It is very important to monitor the condition of the nozzle because the workpiece is uncut or the surface quality deteriorates due to wear, expanding of the bore, damage of the nozzle and clogging of the abrasive, etc. Therefore, in this paper, we propose a monitoring system based on Acoustic Emission(AE) sensor that can detect nozzle condition in real time during AWJ processing.

Effect of OH- Concentration on the Mechanical and Microstructural Properties of Microarc Oxidatoin Coating Produced on Al7075 Alloy

  • Ur Rehman, Zeeshan;Lee, Dong-Gun;Koo, Bon Heun
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.503-508
    • /
    • 2015
  • In this work, ceramic coatings were prepared on Al7075 aluminum alloy using microarc oxidation (MAO) process in a silicate-fluoride based electrolyte solution. The effect of $OH^-$ concentration, by adding NaOH to the solution on the microstructural and mechanical properties of the coating was investigated. Surface morphology and cross sectional view of the coating was analyzed using SEM while XRD was used to examine the phase compositions of the coatings. From XRD ${\alpha}-Al_2O_3$ phase was found to be increased by adding NaOH to the electrolyte. Thereby, the hardness and the wear properties of the MAO coatings were found to be superior to those of the coatings prepared without NaOH addition or with amount maximum than 2 g/l NaOH. Moreover, the morphology of the coatings was transformed form nodule-based cluster to crater based structure with the addition of NaOH to the MAO electrolyte solution.

A Study on Art Wear(I)-Focusing on Clothing-Sculpture- (예술의상에 관한 연구(I)-의상조각(Clothing-Sculpture)을 중심으로-)

  • 김정혜
    • Journal of the Korean Society of Costume
    • /
    • v.38
    • /
    • pp.159-178
    • /
    • 1998
  • Genres of the modern arts are expanding the overlapping area between the arts ; ceramics and weaving considered as crafts are devel-oped to the ceramic art and the fiber art, re-spectively. This trend has been also applied to the clothing part, which produced several new terms such as‘art to wear’,‘unwearable art’,‘clothing sculpture’and so on. As following this tendency, the unwearable art is dwelling on the boundary of painting, fiber art and scul-pture, and the clothing sculpture comes from the combination of fiber art and sculpture. While Issey Miyake's dress made of bamboo and Foltuny's pleats dress associated with Greek stone-column introduce the sculpture to the functional fashion design, the works of clothing sculpture become the arts by applying the sculpture to the non-functional unwearable art. Although the clothing sculpture is an interesting subject to be studied continuously for its effect on the contemporary clothing part, it is valuable enough as an unwearable art and sculpture respresenting the artist's concept under the circumstance that the boundary between arts and design is no longer clear, i.e., the clothing and the sculpture come across their regions each other. Furthermore, the clothing sculpture has its own value as a metapor exposing idea, feeling and spirit of the artist in the genre of the unwearable art. With a view point of the abstract clothing concept, the clothing sculpture has been taking the role expanding the clothing to the world of fine art.

  • PDF

Optimization of the Turning Conditions of Inconel 718 according to Insert Materials using DOE (실험계획법을 이용한 인서트 종류에 따른 Inconel 718 선삭가공조건 최적화)

  • Shin, Pil-Seon;Kim, Jae-Kyung;Jeon, Euy-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.1-8
    • /
    • 2022
  • Inconel 718 is nickel-based and is increasingly being used as a key component in the nuclear, aerospace, and chemical industries which require high fatigue strength and oxidation, because of its excellent corrosion resistance, heat resistance, and wear resistance. It is a heat-resistant alloy which has excellent mechanical properties; however, material deformation, cracking, and shaking occur because of the high cutting temperature accumulated on the cutting surface during cutting processing, and heat accumulated at the insert boundary. Owing to these characteristics, various studies have been conducted, such as developing a tool exclusively for non-deletion, analyzing tool wear, and developing a tool cooling system. However, the optimization of the cutting process is still insufficient. In this study, the optimal process conditions were derived experimentally by cutting conditions according to the insert type during the cutting of Inconel 718.

An in-vitro wear study of human enamel opposing heat-pressed ceramics (2종의 열가압 도재와 법랑질 간의 마모에 관한 연구)

  • Park, Chan-Yong;Jeon, Young-Chan;Jeong, Chang-Mo;Yun, Mi-Jung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • Purpose: The purpose of this study was to compare the wear characteristics of human enamel opposing 2 heat-pressed ceramics (e.max Press and Empress Esthetic), conventional feldspathic porcelain (Ceramco 3) and type III gold alloy. Material and methods: Intact cusps of extracted premolars were used for enamel specimens. Five disk samples were made for each of two heat-pressed ceramics groups, conventional feldspathic porcelain group and type III gold alloy group. Wear tests were conducted in distilled water using a pin-on-disk tribometer. The amount of enamel wear was determined by weighing the enamel specimens before and after wear tests, and the weight was converted to volumes by average density. The wear tracks were analyzed by scanning electron microscopy and surface profilometer to elucidate the wear characteristics. Results: 1. Ceramco 3 led to the greatest amount of enamel wear followed by Empress Esthetic, e.max Press and type III gold alloy. However, there was no significant difference between Ceramco 3 and Empress Esthetic (P>.05), and there were also no significant differences among Empress Esthetic, e.max Press and type III gold alloy (P>.05). 2. The average surface roughness of e.max Press after wear test was smallest followed by Empress Esthetic and Ceramco 3, but there was no significant difference between Empress Esthetic and Ceramco 3 (P>.05). 3. There were no significant differences among the depth of wear tracks of all the groups (P>.05). The group that showed the largest width of wear track was Ceramco 3 followed by Empress Esthetic, e.max Press and type III gold alloy. However, there was no significant difference between e.max Press and Empress Esthetic (P>.05), and there was also no significant difference between Empress Esthetic and Ceramco 3 (P>.05). Conclusion: Within the limits of this study, heat-pressed ceramics were not more abrasive than conventional feldspathic porcelain.

Friction and Wear Properties of Plasma-sprayed Cr2O3-MoO3 Composite Coatings at High Temperature (MoO3가 첨가된 Cr2O3 플라즈마 용사코팅의 고온 마찰 마멸 특성)

  • Lyo, In-Woong;Ahn, Hyo-Sok;Lim, Dae-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.851-856
    • /
    • 2002
  • Tribological behavior of plasma-sprayed $Cr_2O_3$-based coatings containing $MoO_3$ at 450$^{\circ}C$ was investigated to understand the influence of $MoO_3$. A reciprocal disc-on-plate type tribo-tester was employed to examine fricition and wear behavior of the specimens. The microstructure and phase composition of the coating was characterized with Transmission Electron Microscopy(TEM). The TEM analysis indicated that $MoO_3$ was dispersed into the grain boundary, resulting in the increase of the hardness and density of the coating. Worn surfaces were investigated by scanning electron microscopy and chemistry of the worn surfaces was analyzed using a X-ray Photoelectron Spectrometer(XPS). The results showed that the friction coefficient of the $MoO_3$-added coatings was lower than that without $MoO_3$ addition. The larger protecting layers were observed at the worn surface of plasma spray coated specimens with $MoO_3$ composition in the protecting layer appears to be more favorable in reducing the friction.

Fabrication of $Al_2O_3/Al$ Composites by Replacement Reaction of Molten Metal Al (용융 Al의 치환반응에 의한 $Al_2O_3/Al$ 복합체의 제조)

  • 정두화;김용진;배원태
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.6
    • /
    • pp.591-600
    • /
    • 1997
  • Al2O3/Al composites were produced by displacement reaction method, which was carried out by immersing the sintered silica preform, which was prepared from fused silica powder, in molten aluminum. Because the molten aluminum did not penetrate into the silica preform with higher than 20% of porosity when the displacement reaction was accomplished at 100$0^{\circ}C$ for 10 hours in air atmosphere, the optimum range of sintering temperature of silica preform was from 135$0^{\circ}C$ to 140$0^{\circ}C$. The microstructure of this Al2O3/Al composites showed three-dimentionally co-continuous alumina, which provides wear resistance and high stiffness, and aluminium which acts as a toughnening phase. The grain size of the alumina in composites did not change with the particle size of the silica preform. The exact shape of the preform was retained and a net-shaped composite was produced. The representative Al2O3/Al composite prepared in this study showed 3.30mg/㎤ of bulk density, 350-430 MPa of flexural strength, 7.0 MPa.m1/2 of fracture toughness, and good machinability.

  • PDF