• Title/Summary/Keyword: Wavenumber

Search Result 204, Processing Time 0.026 seconds

Seasonal Characteristics of the Longitudinal Wavenumber-4 Structure in the Equatorial Ionospheric Anomaly

  • Kim, E.;Jee, G.;Kim, Y.H.
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.335-346
    • /
    • 2008
  • Using the global total electron contents (TEC) measured by the TOPEX satellite from Aug. 1992 to Oct. 2005, we investigate the variations of the longitudinal wavenumber-4 (LW-4) structure in the equatorial anomaly (EA) crests with season, local time, and solar activity. Our study shows that the LW-4 structure in the EA crests ($5{\sim}20^{\circ}$ MLAT in both hemispheres) has clear four peaks at fixed longitude sectors during the daytime for both equinoxes and June solstice. In spite of being called a wavelike structure, however, the magnitudes and spatial intervals of the four peaks are far from being the same or regular. After sunset, the four-peak structure begins to move eastward with gradual weakening in its amplitude during equinoxes and this weakening proceeds much faster during June solstice. Interestingly, the longitudinal variations during December solstice do not show clear four-peak structure. All these features of the LW-4 structure are almost the same for both low and high solar activity conditions although the ion densities are greatly enhanced from low to high solar activities. With the irrelevancy of the magnetic activity in the LW-4, this implies that the large changes of the upper atmospheric ion densities, one of the important factors for ion-neutral interactions, have little effect on the formation of the LW-4 structure. On the other hand, we found that the monthly variation of the LW-4 is remarkably similar to that of the zonal component of wavenumber-3 diurnal tides at low latitudes, which implies that the lower atmospheric tidal forcing, transferred to the upper atmosphere, seems to have a dominant role in producing the LW-4 structure in the EA crests via the E-region dynamo.

Damage Detection on Thin-walled Structures Utilizing Laser Scanning and Standing Waves (레이저 스캐닝 및 정상파를 이용한 평판 구조물의 손상탐지)

  • Kang, Se Hyeok;Jeon, Jun Young;Kim, Du Hwan;Park, Gyuhae;Kang, To;Han, Soon Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.401-407
    • /
    • 2017
  • This paper describes wavenumber filtering for damage detection using single-frequency standing wave excitation and laser scanning sensing. An embedded piezoelectric sensor generates ultrasonic standing waves, and the responses are measured using a laser Doppler vibrometer and mirror tilting device. After scanning, newly developed damage detection techniques based on wavenumber filtering are applied to the full standing wave field. To demonstrate the performance of the proposed techniques, several experiments were performed on composite plates with delamination and aluminum plates with corrosion damage. The results demonstrated that the developed techniques could be applied to various structures to localize the damage, with the potential to improve the damage detection capability at a high interrogation speed.

Classification of Single-interface Surface Plasmons by Using Complex Differential Diagram (복소차분도표를 이용한 단일경계 표면플라즈몬 모드 이해)

  • Lee, Dong-Jin;Lee, Seung-Gol;O, Beom-Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.2
    • /
    • pp.108-113
    • /
    • 2011
  • In this paper, we propose the complex differential diagram to classify surface plasmon waveguide modes with single interface. To date, surface plasmon waveguide modes are classified using the sign change of the group velocity in the dispersion relation that describes the interrelations between the real wavenumber of the propagation direction and the photon energy. The surface plasmon waveguide modes have the wavenumbers of the direction perpendicular to that in which the wave propagates as well as of the propagation direction, so it is necessary to classify the modes using all of these wavenumbers. The complex differential diagram is a graphical representation with variables of the difference between the real component and the imaginary component of the wavenumber. Using this diagram, the specific mode classification is possible, and it is easy to comprehensively analyze the wavenumber as the function of the photon energy.

Numerical Analysis of Rail Noise Regarding Surface Impedance of Ground by Using Wavenumber Domain Finite and Boundary Elements (지면 임피던스를 고려한 레일 방사 소음의 파수영역 유한요소/경계요소 해석)

  • Ryue, Jungsoo;Jang, Seungho
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.4
    • /
    • pp.289-300
    • /
    • 2015
  • An important source of noise from railways is rolling noise caused by wheel and rail vibrations induced by acoustic roughness at the wheel-rail contact. In conventional approaches to predicting rail noise, the rail is regarded as placed in a free space so that the reflection from the ground is not included. However, in order to predict rail noise close to the rail, the effect of the ground should be contained in the analysis. In this study the rail noise reflected from the ground is investigated using the wavenumber domain finite element and boundary element methods. First, two rail models, one using rail attached to the rigid ground and one using rail located above rigid ground, are considered and examined to determine the rigid ground effect in terms of the radiation efficiency. From this analysis, it was found that the two models give considerably different results, so that the distance between the rail and the ground is an important factor. Second, an impedance condition was set for the ground and the effect of the ground impedance on the rail noise was evaluated for the two rail models.

Spherical Harmonics Power-spectrum of Global Geopotential Field of Gaussian-bell Type

  • Cheong, Hyeong-Bin;Kong, Hae-Jin
    • Journal of the Korean earth science society
    • /
    • v.34 no.5
    • /
    • pp.393-401
    • /
    • 2013
  • Spherical harmonics power spectrum of the geopotential field of Gaussian-bell type on the sphere was investigated using integral formula that is associated with Legendre polynomials. The geopotential field of Gaussian-bell type is defined as a function of sine of angular distance from the bell's center in order to guarantee the continuity on the global domain. Since the integral-formula associated with the Legendre polynomials was represented with infinite series of polynomial, an estimation method was developed to make the procedure computationally efficient while preserving the accuracy. The spherical harmonics power spectrum was shown to vary significantly depending on the scale parameter of the Gaussian bell. Due to the accurate procedure of the new method, the power (degree variance) spanning over orders that were far higher than machine roundoff was well explored. When the scale parameter (or width) of the Gaussian bell is large, the spectrum drops sharply with the total wavenumber. On the other hand, in case of small scale parameter the spectrum tends to be flat, showing very slow decaying with the total wavenumber. The accuracy of the new method was compared with theoretical values for various scale parameters. The new method was found advantageous over discrete numerical methods, such as Gaussian quadrature and Fourier method, in that it can produce the power spectrum with accuracy and computational efficiency for all range of total wavenumber. The results of present study help to determine the allowable maximum scale parameter of the geopotential field when a Gaussian-bell type is adopted as a localized function.

Numerical modeling of explosions and earthquakes from North Korea (북한의 폭파자료와 자연지진에 대한 수치 모델링)

  • Cho, Kwang-Hyun;Kang, Ik-Bum
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.249-252
    • /
    • 2008
  • The solutions are expressed in terms of a double integral transformation over wavenumber and frequency. The complete solution is considered in such a full wave theory approach. This method can handle a larger number of plane layers. Therefore, the result of FK method is very similar to real data. Using the models that were modified in velocity and Q value with depth by iterative process from a model (Kang and Park, 2006) and considered as one of the best models in Korean Peninsula, the synthetic data are simulated for explosions and earthquakes of North Korea. This study notes that the wave shape of the synthetic data is very dependent on Q value, velocities, and thickness of sedimentary layers. Comparing between the real and the synthetic, fitting well in arrival time of first arrival and wave shape causes us to arrive at an indication that the model is very close representation of upper crustal structure and simulations are well done in amplitude fitting and in identification of phases of local and regional waves.

  • PDF

Direction finding based on Radon transform in frequency-wavenumber domain with a sparse array (주파수-파수 스펙트럼과 라돈변환을 이용한 희소 배열 기반 방위추정 기법 연구)

  • Choi, Yong Hwa;Kim, Dong Hyeon;Kim, J.S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.168-176
    • /
    • 2019
  • When an array receives a signal with a frequency higher than the design frequency, there is an ambiguity in beamforming due to spatial aliasing. In order to overcome this problem, Abadi proposed frequency-difference beamforming. However, there is a constraint that the minimum frequency bandwidth is required according to the value of the difference frequency. In this paper, we propose a method to find the direction of the target signal with spatial aliasing based on the frequency-wavenumber spectrum combined with Radon transform. The proposed method can estimate the direction of the target without ambiguities when the signal has nonnegligible bandwidth. We tested the algorithm by simulating a broadband signal and verified the results with the frequency-difference beamforming method using SAVEX15 (Shallow Water Acoustic Variability EXperiment 2015)'s shrimp noise data.

Measurement and simulation of high-frequency bistatic sea surface scattering channel in shallow water of Geoje bay (거제 내만해역에서의 고주파 양상태 해수면 음파산란 채널 측정 및 모의)

  • Choi, Kang-Hoon;Kim, Yongbin;Kim, Sea-Moon;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • High-frequency bistatic sea surface scattering channels according to sea state were measured at an experimental site of Geoje bay in April 2020, and compared with predictions based on scattering theory. A linear frequency-modulated signal with a center frequency of 128 kHz and a bandwidth of 32 kHz was used for the acoustic measurements. Sea surface wavenumber spectrum was calculated from surface roughness data measured by a wave buoy, and bistatic scattering cross-section of Small Slope Approximation (SSA) based on the wavenumber spectrum was estimated. In addition, scattering from near-surface bubbles using wind speed measured during experiments was considered. Surface scattering channel intensity impulse responses were simulated using the scattering cross-section and the simulation results were compared and analyzed with the field data.

Numerical investigation on the flow noise reduction due to curved pipe based on wavenumber-frequency analysis in pressure relief valve pipe system (감압 밸브 배관 시스템 내 파수-주파수 분석을 통한 곡관의 유동소음 저감에 대한 수치적 연구)

  • Garam, Ku;Cheolung, Cheong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.705-712
    • /
    • 2022
  • A sudden pressure drop caused by the pressure relief valve acts as a strong noise source and propagates the compressible pressure fluctuation along the pipe wall, which becomes a excitation source of Acoustic Induced Vibration (AIV). Therefore, in this study, the numerical methodology is developed to evaluate the reduction effect of compressible pressure fluctuation due to curved pipe in the pressure relief valve system. To describe the acoustic wave caused by density fluctuation, unsteady compressible Large Eddy Simulation (LES) technique, which is high accuracy numerical method, Smagorinsky-Lilly subgrid scale model is applied. Wavenumber-frequency analysis is performed to extract the compressible pressure fluctuation component, which is propagated along the pipe, from the flow field, and it is based on the wall pressure on the upstream and downstream pipe from the curved pipe. It is shown that the plane wave and the 1st mode component in radial direction are dominant along the downstream direction, and the overall acoustic power was reduced by 3 dB through the curved pipe. From these results, the noise reduction effect caused by curved pipe is confirmed.