DOI QR코드

DOI QR Code

Numerical investigation on the flow noise reduction due to curved pipe based on wavenumber-frequency analysis in pressure relief valve pipe system

감압 밸브 배관 시스템 내 파수-주파수 분석을 통한 곡관의 유동소음 저감에 대한 수치적 연구

  • 구가람 (부산대학교 첨단냉동공조에너지센터) ;
  • 정철웅 (부산대학교 기계공학부)
  • Received : 2022.06.29
  • Accepted : 2022.08.04
  • Published : 2022.11.30

Abstract

A sudden pressure drop caused by the pressure relief valve acts as a strong noise source and propagates the compressible pressure fluctuation along the pipe wall, which becomes a excitation source of Acoustic Induced Vibration (AIV). Therefore, in this study, the numerical methodology is developed to evaluate the reduction effect of compressible pressure fluctuation due to curved pipe in the pressure relief valve system. To describe the acoustic wave caused by density fluctuation, unsteady compressible Large Eddy Simulation (LES) technique, which is high accuracy numerical method, Smagorinsky-Lilly subgrid scale model is applied. Wavenumber-frequency analysis is performed to extract the compressible pressure fluctuation component, which is propagated along the pipe, from the flow field, and it is based on the wall pressure on the upstream and downstream pipe from the curved pipe. It is shown that the plane wave and the 1st mode component in radial direction are dominant along the downstream direction, and the overall acoustic power was reduced by 3 dB through the curved pipe. From these results, the noise reduction effect caused by curved pipe is confirmed.

감압밸브에서 발생하는 급격한 압력저하는 강한 소음원으로 작용하여 배관을 따라 압축성 압력섭동을 전파시키며, 이는 음향유기진동의 가진원으로 작용한다. 따라서 본 연구에서는 감압밸브가 있는 배관 시스템에서 곡관에 의한 압축성 압력섭동의 저감 효과를 확인할 수 있는 수치기법을 개발하였다. 배관 내 밀도 변화에 의한 음향파 성분을 모사하기 위해 고정밀 해석기법인 비정상 압축성 대와류모사 기법을 적용하였으며, 아격자 모델로는 Smagorinsky-Lilly 모델을 적용하였다. 배관을 따라 전파되는 압축성 압력섭동 성분을 유동장 정보로부터 추출하기 위하여 파수-주파수 분석을 수행하였으며, 곡관을 기준으로 상류방향 배관과 하류방향 배관의 벽면 압력을 활용하였다. 이를 통해 평면파 성분과 n=1에 해당하는 모드 성분이 하류 방향을 따라 강하게 나타나는 것을 확인하였으며, 곡관을 전후로 전체 음향파워가 3 dB 저감되는 것을 확인함으로써 곡관에 의한 압축성 압력섭동 저감 효과를 확인하였다.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. G. Ku, S. Lee, K. Kim, and C. Cheong, "Numerical investigation into flow noise source of a convergent-divergent nozzle in high pressure pipe system using wavenumber-frequency analysis" (in Korean), J. Acoust. Soc. Kr. 36, 314-320 (2017).
  2. J. Cowling, "Acoustic and turbulence/flow induced vibration in piping systems: A real problem for LNG facilities," Proc. Perth Conv. Exhib. Centre, Houston, TX, 1-12 (2016).
  3. J. Kim, D. Shim, and K. Kim, "Experimental study on the noise reduction of drainage pipe by a kind of curve pipe" (in Korean), Proc. Korean Soc. Noise Vib. Eng. Conf. 1-6 (2006).
  4. G. Kim, G. Ku, C. Cheong, W. Kang, and K. Kim, "Numerical investigation on reduction of valve flow noise in high pressure gas pipe using perforated plates" (in Korean) J. Acoust. Soc. Kr. 40, 55-63 (2021).
  5. V. A. Carucci and R. T. Mueller, "Acoustically induced piping vibration in high capacity pressure reducing systems," ASME, 82, 5-18 (1982).
  6. F. L. Eisinger, "Designing piping systems against acoustically induced structural fatigue," J. Press. Vessel Technol. 119, 379-383 (1997). https://doi.org/10.1115/1.2842319
  7. F. L. Eisinger and J. T. Francis, "Acoustically induced structural fatigue of piping systems," Trans. ASME, 121, 438-443 (1999). https://doi.org/10.1115/1.2825997
  8. Norsok Standard, Piping System Layout, Design and Structural Analysis, L-002, Ed. 3, 1-36, 2009.
  9. R. D. Bruce, A. S. Bommer, and T. E. LePage, "Solving acoustic-induced vibration problems in the design stage," Sound & Vib. 47, 8-11 (2013).
  10. M. Agar and L. Ancian, "Acoustic-induced vibration: A new methodology for improved piping design practice," Proc. Offshore Technol. Conf. OTC-26784-MS, 1-12 (2016).
  11. A. Coulon, E. Salanon, and L. Ancian "Innovative numerical fatigue methodology for piping systems: qualifying acoustic induced vibration in the Oil&Gas industry," Procedia Engineering, 213, 762-775 (2018). https://doi.org/10.1016/j.proeng.2018.02.072
  12. Y. Liu, P. Diwakar, D. Lin, I. Eljaouhari, and A. Prakash, "Development of design curve for sweepolet subjected to acoustic induced vibration," Proc. ASME, 1-7 (2016).
  13. B. L. Ridens, T. C. Allison, S. Simons, and K. Brun, "Modeling and mitigation of acoustic induced vibration (AIV) in piping systems," PSIG, 1817, 1-9 (2018).
  14. D. G. Karczub and A. C. Fagerlund, "Dynamic stress predictions of acoustic-induced pipe vibration failures," Proc. 24th Int. Conf. Offshore Mech. Arctic Eng. 1-4 (2005).
  15. M. F. I. A. Fuad, "Gas piping system fatigue life estimation through acoustic induced vibration (AIV) analysis," Int. J. Mech. Eng. Rob. Res. 10, 276-282 (2021).
  16. Energy Institute, "Guidelines for the avoidance of vibration induced fatigue failure in process pipework," London W1G, HSE, 1-236, 2008.
  17. International Maritime Organization (IMO), "The fourth IMO greenhouse gas study 2020," IMO, 4 Albert Embankment, London SE1 7SR, 1-46 (2020).
  18. ISO 7005-1, Pipe Flanges-Part 1_Steel Flanges for Industrial and General Service Piping Systems, 1-10, 2011.
  19. E. Garnier, N. Adams, and P. Sagaut, "LES governing equations," in Handbook of Large Eddy Simulation for Compressible Flows, edited by P. Sagaut (Springer, Dordrecht, 2009).
  20. M. L. Munjal, Acoustics of Ducts and Mufflers, 2nd Edition (US, John Wiley & Sons, 1987), pp. 19-57.
  21. K. Kim, G. Ku, S. Lee, S. Park, and C. Cheong, "Wavenumber-frequency analysis of internal aerodynamic noise in constriction-expansion pipe," Appl. Sci. 7, 1137, 1-16 (2017).
  22. G. Ku, S. Lee, C. Cheong, W. Kang, and K. Kim, "Development of high-fidelity numerical methodology based on wavenumber-frequency transform for quantifying internal aerodynamic noise in critical nozzle," Appl. Sci. 9, 1-15 (2019).