Browse > Article
http://dx.doi.org/10.3807/KJOP.2011.22.2.108

Classification of Single-interface Surface Plasmons by Using Complex Differential Diagram  

Lee, Dong-Jin (Department of Information and Communication Engineering, Inha University)
Lee, Seung-Gol (Department of Information and Communication Engineering, Inha University)
O, Beom-Hoan (Department of Information and Communication Engineering, Inha University)
Publication Information
Korean Journal of Optics and Photonics / v.22, no.2, 2011 , pp. 108-113 More about this Journal
Abstract
In this paper, we propose the complex differential diagram to classify surface plasmon waveguide modes with single interface. To date, surface plasmon waveguide modes are classified using the sign change of the group velocity in the dispersion relation that describes the interrelations between the real wavenumber of the propagation direction and the photon energy. The surface plasmon waveguide modes have the wavenumbers of the direction perpendicular to that in which the wave propagates as well as of the propagation direction, so it is necessary to classify the modes using all of these wavenumbers. The complex differential diagram is a graphical representation with variables of the difference between the real component and the imaginary component of the wavenumber. Using this diagram, the specific mode classification is possible, and it is easy to comprehensively analyze the wavenumber as the function of the photon energy.
Keywords
Surface plasmon waveguide; Mode classification;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405-1-11 (2005).   DOI   ScienceOn
2 P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).   DOI
3 J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193-204 (2010).   DOI
4 J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407-1-9 (2006).   DOI   ScienceOn
5 L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31, 2133-2135 (2006).   DOI   ScienceOn
6 K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55-58 (2009).   DOI
7 D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1, 402-406 (2007).   DOI
8 C. Scales, I. Breukelaar, and P. Berini, “Surface-plasmon Schottky contact detector based on a symmetric metal stripe in silicon,” Opt. Lett. 35, 529-531 (2010).   DOI
9 J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-si field effect plasmonic modulator,” Nano Lett. 9, 897-902 (2009).   DOI
10 P. Neutens, P. V. Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3, 283-286 (2009).   DOI
11 S.-H. Hong, C.-K. Kong, B.-S. Kim, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and B.-H. O, “Implementation of surface plasmon resonance planar waveguide sensor system,” Microelectron. Eng. 87, 1315-1318 (2010).   DOI
12 D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83-91 (2010).   DOI
13 W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).   DOI