• Title/Summary/Keyword: Wavelets

Search Result 268, Processing Time 0.027 seconds

Optimal Wavelet Selection for AR Model Parameter Identification of Nonstationary Time-Varying Signal (비정상 시변신호의 AR모델 파라메터 인식을 위한 최적의 웨이브렛 선택)

  • Shin, D.H.;Kim, S.H.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.50-57
    • /
    • 1996
  • In this paper, we proposed the method of optimal wavelet selection and wavelet expansion of AR(autoregressive) parameters by selected wavelet using F-test. A cost function is introduced as a wavelet selection method. Using this cost function, wavelets (D4 to D20) are tested to the synthesized signal. With this selected wavelet, we get the wavelet coefficients of AR parameters to both synthesized signal and real speech signal. To evaluate the proposed method, this wavelet based algorithm is compared with the Kalman filering algorithm. As a results, the proposed method shows a better performance by about 5-10dB than the Kalman filter.

  • PDF

Noise Reduction and Characteristic Points Detectoin of ECG Signal using Wavelet Transforms (웨이브렛 변환을 이용한 ECG신호의 잡음제거와 특징점 검출)

  • 장두봉;이상민;신태민;이건기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.1
    • /
    • pp.11-17
    • /
    • 1998
  • One of the main techniques for diagnosing heart disease is by examining the electrocardiogram(ECG). Many studies on detecting the QRS complex, p, and T waves have been performed because meaningful information is contained in these parameters. However, the earlier detecting techniques can not effectively extract those parameters from the ECG that is severely contaminated by noise source. In this paper, we performed the extracting parameters from and recovering the ECG signal using wavelets transform that has recently been applying to various fields.

  • PDF

The Digital Image Processing Method Using Triple-Density Discrete Wavelet Transformation (3중 밀도 이산 웨이브렛 변환을 이용한 디지털 영상처리 기법)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.3
    • /
    • pp.133-145
    • /
    • 2012
  • This paper describes the high density discrete wavelet transformation which is one that expands an N point signal to M transform coefficients with M > N. The double-density discrete wavelet transform is one of the high density discrete wavelet transformation. This transformation employs one scaling function and two distinct wavelets, which are designed to be offset from one another by one half. And it is nearly shift-invariant. Similarly, triple-density discrete wavelet transformation is a new set of dyadic wavelet transformation with two generators. The construction provides a higher sampling in both time and frequency. Specifically, the spectrum of the first wavelet is concentrated halfway between the spectrum of the second wavelet and the spectrum of its dilated version. In addition, the second wavelet is translated by half-integers rather than whole-integers in the frame construction. This arrangement leads to high density wavelet transformation. But this new transform is approximately shift-invariant and has intermediate scales. In two dimensions, this transform outperforms the standard and double-density discrete wavelet transformation in terms of multiple directions. Resultingly, the proposed wavelet transformation services good performance in image and video processing fields.

Adaptive Wavelet Analysis of Non-Stationary Vibration Signal in Rotor Dynamics

  • Ji Guoyi;Park Dong-Keun;Chung Won-Jee;Lee Choon-Man
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.26-30
    • /
    • 2005
  • A rotor run-up or run-down process provide more useful information for modal analysis than normal operation conditions. A traditional difficulty associated with rotor run-up or run-down analysis is the non-stationary nature of vibration data. This paper compares Short-Time Fourier Transform (STFT) and the wavelets analysis in these non-stationary signal analyses. An Adaptive Wavelet Analysis (AWT) is proposed to analyze these signals. Although simulations and experiments in a simple rotor-bearing system show that both STFT and AWT can be used to analyze non-stationary vibration signals in rotor dynamics, proposed AWT provides better results than STFT analysis. From the amplitude-frequency curve obtained by AWT, the modal frequency and damping ratio are calculated. This paper also analyzes the characteristics of signals when the shaft touches the outer hoop in a run-up process. The AWT can give a good result in this complex dynamic analysis of the touching process.

A Comparative Study of 3D DWT Based Space-borne Image Classification for Differnet Types of Basis Function

  • Yoo, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.1
    • /
    • pp.57-64
    • /
    • 2008
  • In the previous study, the Haar wavelet was used as the sole basis function for the 3D discrete wavelet transform because the number of bands is too small to decompose a remotely sensed image in band direction with other basis functions. However, it is possible to use other basis functions for wavelet decomposition in horizontal and vertical directions because wavelet decomposition is independently performed in each direction. This study aims to classify a high spatial resolution image with the six types of basis function including the Haar function and to compare those results. The other wavelets are more helpful to classify high resolution imagery than the Haar wavelet. In overall accuracy, the Coif4 wavelet has the best result. The improvement of classification accuracy is different depending on the type of class and the type of wavelet. Using the basis functions with long length could be effective for improving accuracy in classification, especially for the classes of small area. This study is expected to be used as fundamental information for selecting optimal basis function according to the data properties in the 3D DWT based image classification.

MRA AND POD APPLICATION FOR AERODYNAMIC DESIGN OPTIMIZATION (MRA와 POD를 적용한 공력특성 최적설계)

  • Koo, B.C.;Han, J.H.;Jo, T.H.;Park, K.H.;Lee, D.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.7-15
    • /
    • 2015
  • This paper attempts to evaluate the accuracy and efficiency of a design optimization procedure by combining wavelets-based multi resolution analysis method and proper orthogonal decomposition (POD) technique. Aerodynamic design procedure calls for high fidelity computational fluid dynamic (CFD) simulations and the consideration of large number of flow conditions and design constraints. Thus, even with significant computing power advancement, current level of integrated design process requires substantial computing time and resources. POD reduces the degree of freedom of full system by conducting singular value decomposition for various field simulations. In this research, POD combined Design Optimization model is proposed and its efficiency and accuracy are to be evaluated. For additional efficiency improvement of the procedure, multi resolution analysis method is also being employed during snapshot constructions (POD training period). The proposed design procedure was applied to the optimization of wing aerodynamic performance. Throughout the research, it was confirmed that the POD/MRA design procedure could significantly reduce the total design turnaround time and also capture all detailed complex flow features as in full order analysis.

Performance Comparison of OFDM Based on Fourier Transform and Wavelet OFDM Based on Wavelet Transform (웨이블릿 변환 기반의 Wavelet-OFDM 시스템과 푸리에 변환 기반의 OFDM 시스템의 성능 비교)

  • Lee, Jungu;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.3
    • /
    • pp.184-191
    • /
    • 2018
  • Orthogonal frequency division multiplexing(OFDM) is a multicarrier modulation(MCM) system that enables high-speed communications using multiple carriers and has advantages of power and spectral efficiency. Therefore, this study aims to complement the existing shortcomings and to design an efficient MCM system. The proposed system uses the inverse discrete wavelet transform(IDWT) operation instead of the inverse fast Fourier transform(IFFT) operation. The bit error rate(BER), spectral efficiency, and peak-to-average power ratio(PAPR) performance were compared with the conventional OFDM system through the OFDM system design based on wavelet transform. Our results showed that the conventional OFDM and Wavelet-OFDM exhibited the same BER performance, and that the Wavelet-OFDM using the discrete Meyer wavelet had the same spectral efficiency as the conventional OFDM. In addition, all systems of Wavelet-OFDM based on various wavelets confirm a PAPR performance lower than that of conventional OFDM.

Fault Detection and Diagnosis for Induction Motors Using Variance, Cross-correlation and Wavelets (웨이블렛 계수의 분산과 상관도를 이용한 유도전동기의 고장 검출 및 진단)

  • Tuan, Do Van;Cho, Sang-Jin;Chong, Ui-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.726-735
    • /
    • 2009
  • In this paper, we propose an approach to signal model-based fault detection and diagnosis system for induction motors. The current fault detection techniques used in the industry are limit checking techniques, which are simple but cannot predict the types of faults and the initiation of the faults. The system consists of two consecutive processes: fault detection process and fault diagnosis process. In the fault detection process, the system extracts the significant features from sound signals using combination of variance, cross-correlation and wavelet. Consequently, the pattern classification technique is applied to the fault diagnosis process to recognize the system faults based on faulty symptoms. The sounds generated from different kinds of typical motor's faults such as motor unbalance, bearing misalignment and bearing loose are examined. We propose two approaches for fault detection and diagnosis system that are waveletand-variance-based and wavelet-and-crosscorrelation-based approaches. The results of our experiment show more than 95 and 78 percent accuracy for fault classification, respectively.

Eye Localization based on Multi-Scale Gabor Feature Vector Model (다중 스케일 가버 특징 벡터 모델 기반 눈좌표 검출)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Oh, Du-Sik;Kim, Jae-Min;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.48-57
    • /
    • 2007
  • Eye localization is necessary for face recognition and related application areas. Most of eye localization algorithms reported thus far still need to be improved about precision and computational time for successful applications. In this paper, we propose an improved eye localization method based on multi-scale Gator feature vector models. The proposed method first tries to locate eyes in the downscaled face image by utilizing Gabor Jet similarity between Gabor feature vector at an initial eye coordinates and the eye model bunch of the corresponding scale. The proposed method finally locates eyes in the original input face image after it processes in the same way recursively in each scaled face image by using the eye coordinates localized in the downscaled image as initial eye coordinates. Experiments verify that our proposed method improves the precision rate without causing much computational overhead compared with other eye localization methods reported in the previous researches.

Web-based Image Retrieval and Classification System using Sketch Query (스케치 질의를 통한 웹기반 영상 검색과 분류 시스템)

  • 이상봉;고병철;변혜란
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.703-712
    • /
    • 2003
  • With the explosive growth n the numbers and sizes of imaging technologies, Content-Based Image Retrieval (CBIR) has been attacked the interests of researchers in the fields of digital libraries, image processing, and database systems. In general, in the case of query-by-image, in user has to select an image from database to query, even though it is not his completely desired one. However, since query-by-sketch approach draws a query shape according to the user´s desire it can provide more high-level searching interface to the user compared to the query-b-image. As a result, query-by-sketch has been widely used. In this paper, we propose a Java-based image retrieval system that consists of sketch query and image classification. We use two features such as color histogram and Haar wavelets coefficients to search similar images. Then the Leave-One-Out method is used to classify database images. The categories of classification are photo & painting, city & nature, and sub-classification of nature image. By using the sketch query and image classification, w can offer convenient image retrieval interface to user and we can also reduce the searching time.