DOI QR코드

DOI QR Code

웨이블렛 계수의 분산과 상관도를 이용한 유도전동기의 고장 검출 및 진단

Fault Detection and Diagnosis for Induction Motors Using Variance, Cross-correlation and Wavelets

  • ;
  • 조상진 (울산대학교 전기전자정보시스템공학부) ;
  • 정의필 (울산대학교 컴퓨터정보통신공학부)
  • 발행 : 2009.07.20

초록

이 논문에서는 신호 모델에 기반하여 유도전동기의 고장 검출 및 고장 진단을 위한 새로운 시스템을 제안한다. 산업현장에 적용하는 기존의 제품들은 신호가 문턱치를 넘어면 고장을 검출하는 단순한 알고리듬을 가지고 있어 고장의 유형이나 고장을 예측하는데 문제가 있다. 이 논문에서는 이러한 문제들을 해결하기 위한 시스템을 제안한다. 이 시스템은 고장 검출 과정과 고장 진단 과정으로 구성되며, 고장 검출 과정은 기계 신호음들이 웨이블렛 필터뱅크를 통과한 후 웨이블렛 계수들의 분산과 상관도를 분석하여 고장을 검출한다. 고장 진단 과정은 패턴분류기술을 적용하여 고장의 유형을 진단하게 된다. 대표적인 유도전동기 고장 유형들로서는 불평형, 미스얼라이먼트, 그리고 베어링 루스 등이 있으며, 이러한 유형들은 제안하는 시스템에서 분석되고 진단을 받게 된다. 제안하는 시스템에 적용한 결과 상관도를 이용한 방법은 78 %, 분산을 이용한 방법은 95 % 이상의 고장진단율을 보이는 우수한 결과를 나타내었다.

In this paper, we propose an approach to signal model-based fault detection and diagnosis system for induction motors. The current fault detection techniques used in the industry are limit checking techniques, which are simple but cannot predict the types of faults and the initiation of the faults. The system consists of two consecutive processes: fault detection process and fault diagnosis process. In the fault detection process, the system extracts the significant features from sound signals using combination of variance, cross-correlation and wavelet. Consequently, the pattern classification technique is applied to the fault diagnosis process to recognize the system faults based on faulty symptoms. The sounds generated from different kinds of typical motor's faults such as motor unbalance, bearing misalignment and bearing loose are examined. We propose two approaches for fault detection and diagnosis system that are waveletand-variance-based and wavelet-and-crosscorrelation-based approaches. The results of our experiment show more than 95 and 78 percent accuracy for fault classification, respectively.

키워드

참고문헌

  1. Cohen, L., 1995, “Time-Frequency Analysis,” Prentice Hall
  2. Eren, L., Teotrakool, K. and Devaney, M., 2007, “Bearing Fault Detection via Wavelet Packet Decomposition with Spectral Post Processing,” Instrumentation and Measurement Technology Conference - IMTC 2007,Warsaw, Poland https://doi.org/10.1109/IMTC.2007.379444
  3. Gertler, J. J., 1998, Fault Detection and Diagnosis in Engineering Systems, Marcel Dekker, Inc, America
  4. Norton, M. P. and Karczub, D. G., 2003, “Fundamentals of Noise and Vibration Analysis for Engineers,” Cambridge University Press, United Kingdom
  5. Vetterli, M. and Kovacevic, J., 1995, “Wavelet and Subband Coding,” Prentice Hall
  6. Akansu, A. N. and Haddad, R. A., 1992, “Multiresolution Signal Decomposition,” Academic Press
  7. Chung, B.-H. and Shin, D.-C., 2004, “A Development of the Algorithm to Detect the Fault of the Induction Motor Using Motor Current Signature Analysis,” Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 14, No. 8, pp. 675~683 https://doi.org/10.5050/KSNVN.2004.14.8.675
  8. McInerny, S. A. and Dai, Y., 2003, “Basic Vibration Signal Processing for Bearing Fault Detection,” IEEE transaction on Education, Vol. 46, pp. 149~156 https://doi.org/10.1109/TE.2002.808234
  9. Isermann, R., 2006, “Fault Diagnosis System : An Introduction from Fault Detection to Fault Tolerance,” Springer, Germany
  10. Isermann, R., 1994, “Integration of Fault Detection and Diagnosis Methods,” In Proceeding of IFAC Symposium on fault detection, Supervision and Safety for Technical Processes, Espoo, Finland, pp. 587~609
  11. Isermann, R., 1997, “Supervision, Fault Detection and Diagnosis Methods- an Introduction,” Control Engineering Practice – CEP. Vol. 5, No. 5, pp. 639~652 https://doi.org/10.1016/S0967-0661(97)00046-4
  12. Chung, B.-H. and Shin, D.-C., 2002, “A Study on Detection of Broken Rotor Bars in Induction Motors Using Current Signature Analysis,” Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 12, No. 4, pp. 287~293 https://doi.org/10.5050/KSNVN.2002.12.4.287
  13. Widodo, A. and Yang, B.-S., 2006, “Intelligent Fault Diagnosis of Induction Motor Using Support Vector Machines,” Proceedings of the KSNVE Annual Autumn Conference 2006, KSNVE06A-11-03
  14. Tran, V. T., Yang, B.-S. and Oh, M.-S., 2006, “Fault Diagnosis of Induction Motors Using Decision Trees,” Proceedings of the KSNVE Annual Autumn Conference 2006, KSNVE06A-11-04
  15. Calis, H., 1998, “Current-based Detection of Mechanical Faults in Induction Motors,” PhD thesis, University of Sussex
  16. Chow, T. W. S., 1996, “Condition Monitoring of Electrical Machines Using Third-order Spectrum Analysis,” IEEE IAS Annual Meeting. Vol. 1, pp. 679~686 https://doi.org/10.1109/IAS.1996.557109
  17. Schoen, R., 1994, “On-line Current-based Condition Monitoring of Three-phase Induction Machines,” PhD thesis at Georgia Institute of Technology
  18. Boyle, C., et al, 1994, “Online Current Monitoring to Detect Misalignment and Dynamic Eccentricity in Three-phase Induction Motor Drives,” In: Proceedings of the 29th Universities Power Engineering Conference 1, Galway, Ireland, pp. 5~8
  19. Cameron, J. R., 1987, “Vibration and Current Monitoring for Online Detection of Airgap Eccentricity in Induction Motors. PhD Thesis at Robert Gordon Institute of Technology
  20. Arkan, M., Calis, A. H. and Tagluk, A. M. E, 2005, 'Bearing and Misalignment Fault Detection in Induction Motors by Using the Space Vector Angular Fluctuation Signal,' Electrical Engineering. Vol. 87, pp. 197~206 https://doi.org/10.1007/s00202-004-0242-6
  21. McInerny, S. A. and Dai, Y., 2003, “Basic Vibration Signal Processing for Bearing Fault Detection,” IEEE Transaction on Education, Vol. 46, No. 1, pp. 149~156 https://doi.org/10.1109/TE.2002.808234
  22. Yang, B.-S., Kim, K. J. and Han, T., 2004, “Fault Diagnosis of Induction Motors Using Data Fusion of Vibration and Current Signals,” Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 14, No. 11, pp. 1091~1100 https://doi.org/10.5050/KSNVN.2004.14.11.1091
  23. Thomson, W. T. and Fenger, M., 2001, “Current Signature Analysis to Detect Induction Motor Faults,” IEEE Industry Applications Magazine, pp. 26~31 https://doi.org/10.1109/2943.930988

피인용 문헌

  1. Neural-network-based Fault Detection and Diagnosis Method Using EIV(errors-in variables) vol.21, pp.11, 2011, https://doi.org/10.5050/KSNVE.2011.21.11.1020