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ABSTRACT

In this paper, we propose an approach to signal model-based fault detection and diagnosis system for 
induction motors. The current fault detection techniques used in the industry are limit checking techniques, 
which are simple but cannot predict the types of faults and the initiation of the faults. The system consists 
of two consecutive processes: fault detection process and fault diagnosis process. In the fault detection 
process, the system extracts the significant features from sound signals using combination of variance, 
cross-correlation and wavelet. Consequently, the pattern classification technique is applied to the fault 
diagnosis process to recognize the system faults based on faulty symptoms. The sounds generated from 
different kinds of typical motor’s faults such as motor unbalance, bearing misalignment and bearing loose 
are examined. We propose two approaches for fault detection and diagnosis system that are wavelet-
and-variance-based and wavelet-and-crosscorrelation-based approaches. The results of our experiment show 
more than 95 and 78 percent accuracy for fault classification, respectively.

요  약

이 논문에서는 신호 모델에 기반하여 유도전동기의 고장 검출 및 고장 진단을 위한 새로운 시스템을 제

안한다. 산업현장에 적용하는 기존의 제품들은 신호가 문턱치를 넘어면 고장을 검출하는 단순한 알고리듬

을 가지고 있어 고장의 유형이나 고장을 예측하는데 문제가 있다. 이 논문에서는 이러한 문제들을 해결하

기 위한 시스템을 제안한다. 이 시스템은 고장 검출 과정과 고장 진단 과정으로 구성되며, 고장 검출 과정

은 기계 신호음들이 웨이블렛 필터뱅크를 통과한 후 웨이블렛 계수들의 분산과 상관도를 분석하여 고장을 

검출한다. 고장 진단 과정은 패턴분류기술을 적용하여 고장의 유형을 진단하게 된다. 대표적인 유도전동기 

고장 유형들로서는 불평형, 미스얼라이먼트, 그리고 베어링 루스 등이 있으며, 이러한 유형들은 제안하는 

시스템에서 분석되고 진단을 받게 된다. 제안하는 시스템에 적용한 결과 상관도를 이용한 방법은 78 %, 분

산을 이용한 방법은 95 % 이상의 고장진단율을 보이는 우수한 결과를 나타내었다.
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1. Introduction

Systems for detection and diagnosis of mal-

** 울산대학교 전기전자정보시스템공학부



Fault Detection and Diagnosis for Induction Motors Using Variance, Cross-correlation and Wavelets

한국소음진동공학회논문집/제 19 권 제 7 호, 2009년/727

functioning machines play an important role in 
industrial fields. This is particularly important for 
machines such as airplanes and ships whose 
failures may lead to critical situations. It is also 
critical in the manufacturing industry, since a bad 
manufacturing machine may produce many de-
fective products dangerous to consumers. It is 
therefore compulsory to have an investigation for 
the earliest possible detection for a machine be-
fore it becomes faulty. 

A fault detection and diagnosis consists of two 
consecutive processes(3,9) : fault detection process 
and fault diagnosis process as shown in Fig. 1. 
Generally, fault detection and diagnosis are based on 
measured variables by instrumental and observed 
variables and states by human operators. The fault 
detection process analyzes the measured signals 
such as vibration, noise, acoustic sound, pressure 
or bases on the analytical parameters to generate 
the faulty symptoms, which can be analytical 
symptoms or heuristic symptoms(8,10,11). The faulty 
symptoms are the input of the fault diagnosis 
process that determines the size, type and location 
of the system fault(9).

An induction motor is a three phase AC motor 
and the most widely used machine. Its cha-
racteristic features are: simple and rugged cons-

Fig. 1 General structure of model-based fault detec-
tion and diagnosis

truction, low cost and minimum maintenance, 
high reliability and sufficiently high efficiency, 
needs no extra starting motor and need not be 
synchronized. An induction motor has basically 
two parts: Stator and Rotor. The Stator is made 
up of a number of stampings with slots to carry 
three phase windings. It is wound for a definite 
number of poles. The windings are geometrically 
spaced 120 degrees apart. Two types of rotors are 
used in Induction motors: Squirrel-cage rotor and 
Wound rotor. During the operation; however, 
there are some kinds of faults frequently happen 
such as: rotor bar eccentricity and stator winding 
failures, misalignment, bearing faults and worn 
pumps. 

Motor faults are typically related to core 
components such as stators, rotors and bearings. 
Surveys indicate that these components account 
for 88 % of motor failures(23). There are many 
ways to detect the mechanical and electrical 
problems in induction motor(13~19), either directly 
or indirectly such as: vibration analysis, motor 
current signature analysis(MCSA), electromagnetic 
field monitoring, chemical analysis, noise and 
acoustic analysis, temperature measurability, infrared 
measurement and partial discharged measurement. 
Among these techniques, the current(7,12) and 
vibration analysis(22) are the most popular ones 
due to their easy measurability, high accuracy and 
reliability. Other fault detection and diagnosis 
techniques have been proposed for bearing faults. 
Bearings are important parts in induction motors 
since 40 percent of faults in induction motors are 
related to bearing faults(2,20,21).

In this paper, we proposed new approaches of 
fault detection and diagnosis for induction motors. 
We experiment with the different faults of the 
motor using microphones to record the sound 
signals produced from the motor. As vibration 
signal, sound signal from the motor has specific 
characteristics. When the condition of the motor 
changes the characteristics of the sound signal 
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also varies. The motor running in the abnormal 
condition generates a different sound comparing 
with that in the normal condition. By analyzing 
the features of the sounds to generate the faulty 
symptoms in the fault detection process, we 
predict the motor condition in the fault diagnosis 
process. In this experiment, sounds from typical 
faults of the induction motor are collected 
categorized into faulty categories. Through the 
faulty symptoms, any sound signals generated 
from the motor are classified to the corresponding 
faulty category. Therefore, the fault recognition is 
made.

2. Proposed Approaches for Fault 

Detection and Diagnosis

2.1 Wavelet-and-variance-based Technique
In this approach, a sound signal is decomposed 

into smaller frequency bands using the wavelet 
transform, which can be referred in(1,5,6). Each of 
these frequency bands is applied in time-domain 
to calculate its variance. A collection of variance 
values(i.e. feature vector) from the frequency 
bands are considered as a faulty symptom in the 
fault detection process. Since a normal signal and a 
faulty signal are different in term of frequencies, the 
differences in feature vectors(variances) can be 
considered for differential identification of the 
signals. This is essential for the fault diagnosis 
process, which recognizes the fault based on the 
faulty symptoms. A variance presents the central 
dispersion of a sound signal data. Any two similar 
sound signals must have approximate variances. 
However, two signals, which have similar variances, 
are not surely guaranteed to be similar. There are 
also some features that have similar presentation 
such as mean, Kurtosis, Skewness, etc.(1,4) that we 
can employ such the interested features as the 
variance feature. Hence, in the fault detection 
process, the feature vector is produced and 
considered as the faulty symptom.

We propose a classification model for the fault 
diagnosis process as shown in Fig. 2.

In the wavelet and variance module in this 
model, the sound signal is decomposed into N 
frequency bands (one band presents a signal that 
contains this frequency band) using the wavelet 
transform. For each band, we reconstruct the 
signal for this band into time domain; thereafter, 
its variance value is calculated. Finally, a 
collection of variances for all frequency bands is 
represented by a N-element feature vector for the 
signal(each element of the feature vector is a 
scalar variance value from each wavelet band). 
The decomposition of a sound signal using the 
wavelet transform is represented in Fig. 3. The 
sound signal is decomposed into four frequency 
bands (i.e. wavelet decomposition at level 2. At 
wavelet level K , 2K bands are produced).

Assuming that we have P faulty categories, to 
classify one signal into one of the P faulty 
categories, it is necessary to define a set of 
features that contains majority important feature 
of that category (i.e. the reference feature vector); 
therefore, the trained signal should be compared 

Wavelet and 
variance

Compare 
distance

Reference 
feature vectors

Sound signal
Feature
vector

Feature
vector

Minimum
distance

List of 
sound

categories

Fig. 2 Proposed classification model using wavelet 
and variance based technique

Fig. 3 Sound signal decomposition using wavelet at 
level 2
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with the reference feature vector. The methods for 
selecting the reference feature vector are various 
such as the vector that has the minimum 
Euclidean distance with other feature vectors in 
the category. In this paper, we determine the 
reference feature vector that contains collection of 
variance values of entire wavelet bands with each 
variance value of the reference feature vector is 
the mean of all variance values from sample 
signals in that category.

In the classifier module, the Euclidean distances 
between the feature vectors extracted from trained 
signals and each reference feature vector from P 
categories are made. Normally, two signals are 
similar if their Euclidean distance gets a mini-
mum; hence, the minimum distance provides the 
information of the category that the trained signal 
should be classified to. Suppose that X is the 
feature vector from the trained signal and Y is 
the feature vector from the reference signal. Each 
vector has N elements with the coordinates 
{X1,X2,...,XN} and {Y1,Y2,...,YN} respectively. The 
Euclidean distance can be calculated as follows:

∑
=

−=
N

i
iiXY YXD

1

2)( (1)

The final decision for classification is that an 
arbitrary trained signal is referred to the equi-
valent signal category if it is the most similar to 
the reference feature vector of this category as 
well as the Euclidean distance must be smaller 
than an assigned threshold. The threshold may be 
allocated to a scalar value depending on faulty 
conditions(normally, assigned by the expert’s 
experience). The threshold assures that the trained 
signal is classified to the correct faulty category. 
Sometimes, the trained signal is the most similar 
to a specific faulty category through the minimum 
Euclidean distance comparing with the other 
category; however, this trained signal and the 
other signals in the faulty category are fairly 

distinctive. In this case, this trained signal may 
belong to another faulty category or this signal 
gets a big disturbance from the outside envi-
ronment.

2.2 Wavelet-and-crosscorrelation-based 
Technique

In this proposed approach, the cross-correlation 
function is utilized to examine the similarity 
between two signals. Cross correlation is a 
standard method of estimating the degree to 
which two series are correlated. Consider two 
series )(nx  and )(ny , where Nn ,...,3,2,1= . The 

cross correlation xyR  at delay k  is defined as :
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where xμ  and yμ  are the mean of )(nx  and 
)(ny , respectively. If two signals are similar, the 

strong correlation should be at the delay of the 
middle point and its value should be nearly 1. 
Figure 4 shows the cross-correlation between two 
similar signals with the maximum value of 
correlation of approximate 0.8 at the middle 
point. Two signals in a same faulty category 
should have similar spectrum in some important 
frequency bands; however, they also may have 
some different spectrum in some less important 
bands. Therefore, two signals classified into the 
same category must be similar in some frequency 
bands wherein high energies exist. In this 
approach, we proposed an approach to use the 
wavelet and cross-correlation techniques for fault 
detection and fault diagnosis processes. The basic 
idea of this approach is to find the most 
important frequency bands for each reference 
signal in each faulty category. Then, the 
comparison between the trained signal and the 
reference signal is checked just in the most 
important frequency band.



Do Van Tuan, Sang-Jin Cho and Ui-Pil Chong

730/한국소음진동공학회논문집/제 19 권 제 7 호, 2009년

The proposed faulty classification model for 
fault diagnosis process is described in Fig. 5 with 
the details described as follows:

Feature extraction : As previously mentioned, a 
signal is decomposed into a number of frequency 
bands using the wavelet transform. The fre-
quencies in the FFT(fast time Fourier transform(1)) 
domain of each band are practiced as features.

Dictionary : For each category, a standard signal 
is selected as a reference signal that is closest to 
the other sample signals in the same category. 
After using the wavelet transform to decompose 
the reference signals from all categories into 
frequency bands(suppose N bands created), each 
frequency band are saved to the dictionary as the 
frequency feature vectors, which are used to make 
cross-correlations with trained signals. Therefore, in a 
dictionary for a faulty category, there are N 
frequency feature vectors existing.

Fig. 4 Cross-correlation of two signals in the same 
loose bearing category

Fig. 5 Proposed classification model using wavelet 
and cross-correlation based approach

Classifier : The classifier module assorts any 
trained signal into one of the faulty signal cate-
gories by authenticating the affinity between the 
signal and each category reference signal. The 
trained signal is classified to a faulty category if 
it is close to the reference signal of this faulty 
category. As we mentioned above, in order to  
compare a trained signal with each category reference 
signal(saved as frequency feature vectors in the 
dictionary), each corresponding band from two 
signals are compared by checking their cross-
correlation. Only the important frequency bands 
are considered. The cross-correlations at the strongest 
correlation points of the important frequency 
bands are used and assigned the equivalent 
thresholds depending on the expert’s experience.

3. Results and Discussions

3.1 Database
Due to the circumscription of experiment, there 

are restricted databases generated including four 
cases of the motor’s faults and one normal case, 
they are: BF(fault bearing), LO(loose bearing), 
UN(unbalance bearing), and MIS(misalignment 
bearing) and NOR(normal bearing) sound signals. 
For each case, a one-second duration segment of 
a sound signal is stored as a separate signal.  In 
this experiment, there are 42 sound signals used 
for training with nine signals for BF, nine for 
NOR, eight for LO, seven for UN and nine for 
MIS. This set of sound signal is referred to the 
testing database. To select the reference sound 
signal for each category, a database of 25 sound 
signals are used with five signals for each 
category. For each category, a reference sound 
signal is assigned as one in the five signals that 
is the most similar to the other signals. Once the 
reference sound signal has been chosen for each 
category, the reference feature vector is easily 
produced using the previously mentioned approach.

The characteristics of reference signals of five 
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categories in time domain and frequency domain 
are represented in Fig. 6 and Fig. 7, respectively. 
In time domain, reference signals are different 
from each other; therefore, the features calculated 
in time domain such as mean, variance, and 
Kurtosis are also different. In frequency domain, 
low frequency components of five signals exist 
stronger than the other components. The low 

Fig. 6 The waveform of Five reference signals from 
BF, NOR, LO, UN and MIS categories in 
time domain

Fig. 7 FFT five reference signals from BF, NOR, 
LO, UN and MIS categories

frequency components from MIS category reference 
signal are stronger than that from the other 
categories. The frequency characteristics of 
reference signals lead us to consider the best 
frequency components for fault recognition. In 
this case, the low frequency components are 
strongly significant to consider than the other 
components. 

3.2 Results and Discussions
(1) Results of Wavelet-and-variance-based Approach
The threshold is assigned to 10-7. Only the 

trained sound signal with minimum Euclidean 
distance with other category’s reference feature 
vectors less than the threshold is considered, or 
otherwise neglected. The testing database are 
trained on this approach, consequently we can 
conclude the results in Table 1, 2 and 3.

Table 1 shows the Euclidean distance between 
the sound signals in the loose bearing fault 
category and the reference feature vectors of 
faulty categories. The bold numbers represent the 
minimum distance. Associating with the threshold 
value, it is obviously said that all of eight signals 
trained are classified to the LO(loose bearing) 
category. The difference between the bold num-
bers and the others also provides the significant 
information that those signals and other categories 
are strongly distinctive.      

Besides, Table 2 illustrates an example of a 
training process where one arbitrary signal from 
each category is trained. The first signal supposed 
to be classified to the BF category is; however, 
not classified to any category. It is because the 
minimum Euclidean distance obtained is greater 
than the threshold. Even this signal is the most 
similar to the reference signal of the BF category, 
the big distance does not ensure for a correct 
classification. The other signals are classified to 
the exactly corresponding categories. Finally, the 
total classification results are presented in Table 
3. Among nine signals in the BF category, two 
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signals are not correctly classified since their 
corresponding Euclidean distances are not less than 
the assigned threshold; however, the other signals are 
classified properly to the corresponding categories. 
The overall classification accuracy reaches more than 

Table 1 Euclidean distance between the feature 
vector of each signal in Loose bearing 
fault category and other category’s refe-
rence feature vectors (multiply by 10-5)

Loose 
bearing 
signal

Category

BF NOR LO UN MIS

1 0.3958 0.0357 0.0003 0.0155 0.2101

2 0.3900 0.0347 0.0001 0.0145 0.2066

3 0.3805 0.0322 0.0003 0.0130 0.2012

4 0.3927 0.0343 0.0002 0.0145 0.2081

5 0.3961 0.0346 0.0001 0.0146 0.2092

6 0.3891 0.0335 0.0002 0.0139 0.2034

7 0.3782 0.0304 0.0002 0.0121 0.1971

8 0.3900 0.0347 0.0001 0.0145 0.2066

Table 2 Euclidean distance between a feature vector 
of an arbitrary signal in each category and 
other category’s reference feature vectors 
(multiply by 10-5)

Signal 
(belonging 
category)

Category

BF NOR LO UN MIS

1 (BF) 0.0056 0.2170 0.3819 0.2692 0.0890

2 (NOR) 0.2168 0.0007 0.0347 0.0053 0.0975

3(LO) 0.3961 0.0346 0.0001 0.0146 0.2092

4(UN) 0.2693 0.0049 0.0146 0.0004 0.1288

5(MIS) 0.0723 0.0996 0.2067 0.1383 0.0009

Table 3 Classification results. Ca : classification accu-
racy

Categories 
(# of 

signals)

Category

BF NOR LO UN MIS CA%

BF (9) 7 0 0 0 0 77.8

NOR (9) 0 9 0 0 0 100

LO (8) 0 0 8 0 0 100

UN (7) 0 0 0 7 0 100

MIS (9) 1 0 0 0 9 100

Overall 95.6

95 percent.
In Fig. 6, the reference signals from LO, UN 

and MIS categories are distinctive from the 
others; hence, the equivalent variance values are 
also different from the others. However, the 
waveforms of reference signals from BF and 
NOR category are quite similar. That may explain 
why two signals from BF category are not classified 
correctly. However, with more than 95 % of 
classification accuracy, this is very promising app-
roach.

(2) Results of Using Wavelet-and-crosscorrela-
tion-based Approach

In this approach, thresholds are also needed to 
estimate the similarity between two signals. 
Depending on the characteristic of the category, a 
threshold for each wavelet band may be different. 
For instance, the thresholds for the most signi-
ficant bands are commonly higher than that of 
the less important bands. 

Each signal in the testing database is trained 
by this approach. To classify a signal into a 
specific category, we need to examine the simi-
larity between this trained signal and the refe-
rence signals as well as consider the similarity in 
the most important frequency band. Each wavelet 
band from the trained signal is cross-correlated to 
equivalent wavelet band from reference signals. 
This band is assigned to the specific category if 
their cross-correlation value gets maximum and 
higher than the others. Like previous approach, 
we also use the same approach for selecting the 
reference signal in the 25 sound signals database 
and we also use the testing database for training. 

We demonstrate the results of experiment through 
Table 4. As previously mentioned, it is meaningful 
to estimate which frequency bands of a signal are 
the most important. For example, in Figure 8 
representing the spectrum of a LO signal, the 
most important frequency bands are 1, 2, 5 and 
8. Therefore, to distinguish the LO signal from 
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other category signals, the wavelet bands 1, 2, 5 
and 8 are more significant to examine. Table 4 
presents the maximum cross-correlation value of 
the eight wavelet bands from an arbitrary LO 
signal and corresponding wavelet bands of 
reference signals. The bold numbers present the 
maximum value in a row. In the two first, fifth 
and eighth frequency bands, the maximum values 
belong to the LO category; however, in the other 
bands the maximum values belong to other 
categories. As previously mentioned, for the LO 
signal, first, second, fifth and eighth bands are 
the most significant bands; hence, this signal is 
clearly classified to the LO category.

The thresholds for each the wavelet bands are 
assigned as shown in Table 5. We just consider 
the important bands and neglect the other bands 
since only the important bands provide the 
essential information for identifying the faults. 
The thresholds are dependent on the engineering 
expert’s experience. In this experiment we set the 
thresholds using our feel on the sound and vision 
on frequency spectrum. Finally, the total 
classification results are presented in Table 6. 
Among nine signals in the BF category, five 
signals are not correctly classified that is a big 
trouble in this approach. The overall classification 
accuracy reaches more than 78 percent.

In this approach using wavelet technique and 

Fig. 8 FFT of a loose bearing fault signal

differences of frequency components to recognize 
the normal signal and faulty signal. However, in 
the BF category itself, the distribution of frequency 

Table 4 Maximum cross-correlation value of 8 wavelet 
bands from an arbitrary LO trained signal 
and corresponding wavelet bands of refe-
rence signals of the entire categories

Wavelet 
bands

Category
BF NOR LO UN MIS

1 0.8794 0.9779 0.9973 0.9871 0.7756

2 0.4242 0.4562 0.6042 0.4228 0.3307

3 0.4423 0.5173 0.4303 0.5269 0.3953

4 0.4850 0.5078 0.4927 0.4934 0.4422

5 0.5482 0.5762 0.7062 0.5373 0.6388

6 0.5518 0.5548 0.5372 0.5329 0.4913

7 0.5102 0.5451 0.5805 0.5546 0.5096

8 0.5126 0.5469 0.5324 0.5604 0.5344

Table 5 Assigned thresholds for each frequency bands 
for each category. If a band is not im-
portant to consider then in the table, it is 
marked as ‘x’

Wavelet 
bands

Category
BF NOR LO UN MIS

1 0.7 0.98 0.99 0.99 0.95

2 0.6 0.55 0.6 0.55 0.75

3 x x x x x

4 0.55 x x x 0.6

5 0.55 x x x x

6 x x x x x

7 x 0.55 x x x

8 x x x x x

Table 6 Classification results. Ca : classification accu-
racy

Categories 
(# of 

signals)

Category
BF NOR LO UN MIS CA%

BF (9) 4 0 0 0 0 44.4

NOR (9) 0 7 0 0 0 77.8

LO (8) 0 0 8 0 0 100

UN (7) 0 0 0 5 0 71.4

MIS (9) 0 0 0 0 9 100

Overall 78.7
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components in signals are not completely 
resemble. In some frequency bands, signals from 
different categories have similar presentation of 
frequency components. That is why the results of 
classification for BF category are not satisfied. 
Improving the approach to solve this problem is 
our future work. Even not good results for some 
category, this is a very promising approach. Con-
sidering the frequency components in the most 
frequency bands is the best way to find the faults 
since the frequency components are related to 
physical phenomena.

4. Conclusions

By investigating the characteristics of faults 
normally happened in operating induction motors, 
we implemented an experiment on an induction 
motor. From the experiment, a set of sound 
signals from different faults of the induction 
motor is generated. We also proposed two 
approaches to deal with how to recognize the 
motor’s faults through the sound signal that the 
motor generates. We exploited the combination 
between the variance and the cross-correlation 
with the wavelet to extract the significant features 
of sound signals, which is known as the faults 
symptoms for the fault detection process. The 
results of the fault diagnosis process via the 
classification accuracy shows the potential of the 
approach using these extracted features. Moreover, 
the various results from each approach may offer 
valuable information for different kinds of 
applications in fault detection and diagnosis. The 
previous techniques such as limit checking and 
process model-based have their own disadvantages. 
The limit checking technique is simple, easy to 
implement and suitable for a small systems; 
however, it has a limit information of fault and 
faults are unpredictable. The rarely used technique  
and process model-based describe details of the 
faults; however, it is very complex, difficult to 

deploy and not suitable for a small systems such 
as induction motors. Our approaches to fault 
detection and diagnosis are easy to implement, 
believable  and suitable for induction motors. The 
short- coming of this work is the limit of faulty 
categories. We deal with some typical faults of 
motors; however, many faults may happen in an 
operating motor that need to be considered.
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