• Title/Summary/Keyword: Wavelet-based neural network

Search Result 185, Processing Time 0.029 seconds

Optimal Structure of Modular Wavelet Network Using Genetic Algorithm (유전 알고리즘을 이용한 모듈라 웨이블릿 신경망의 최적 구조 설계)

  • Seo, Jae-Yong;Cho, Hyun-Chan;Kim, Yong-Taek;Jeon, Hong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.5
    • /
    • pp.7-13
    • /
    • 2001
  • Modular wavelet neural network combining wavelet theory and modular concept based on single layer neural network have been proposed as an alternative to conventional wavelet neural network and kind of modular network. In this paper, an effective method to construct an optimal modular wavelet network is proposed using genetic algorithm. Genetic Algorithm is used to determine dilations and translations of wavelet basis functions of wavelet neural network in each module. We apply the proposed algorithm to approximation problem and evaluate the effectiveness of the proposed system and algorithm.

  • PDF

A Study of Pattern Classification System Design Using Wavelet Neural Network and EEG Signal Classification (웨이블릿 신경망을 이용한 패턴 분류 시스템 설계 및 EEG 신호 분류에 대한 연구)

  • Im, Seong-Gil;Park, Chan-Ho;Lee, Hyeon-Su
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.3
    • /
    • pp.32-43
    • /
    • 2002
  • In this paper, we propose a pattern classification system for digital signal which is based on neural networks. The proposed system consists of two models of neural network. The first part is a wavelet neural network whose role is a feature extraction. For this part, we compare existing models of wavelet networks and propose a new model for feature extraction. The other part is a wavelet network for pattern classification. We modify the structure of previous wavelet network for pattern classification and propose a learning method. The inputs of the pattern classification wavelet network is connection weights, dilation and translation parameters in hidden nodes of feature extraction network. And the output is a class of the signal which is input of feature extraction network. The proposed system is, applied to classification of EEG signal based on frequency.

A Neural Network Based Handwritten-Charater Recognition using Binary Wavelet Transform (이진 웨이브렛 변환을 이용한 신경회로망의 필기체 문자 인식)

  • Lee, Jung-Moon;You, Kyoung-San
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.331-338
    • /
    • 1997
  • In this paper, we propose a new neural pattern recognition from wavelet transform. We first analysis in BFT(Binary Field Transform) in character image. The proposed neural network and wavelet transform is able to improve learning time and scaling. The ability and effectiveness of identifying image using the proposed wavelet transform will be demonstrated by computer simulation.

  • PDF

Robust Adaptive Wavelet-Neural-Network Sliding-Mode Speed Control for a DSP-Based PMSM Drive System

  • El-Sousy, Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.505-517
    • /
    • 2010
  • In this paper, an intelligent sliding-mode speed controller for achieving favorable decoupling control and high precision speed tracking performance of permanent-magnet synchronous motor (PMSM) drives is proposed. The intelligent controller consists of a sliding-mode controller (SMC) in the speed feed-back loop in addition to an on-line trained wavelet-neural-network controller (WNNC) connected in parallel with the SMC to construct a robust wavelet-neural-network controller (RWNNC). The RWNNC combines the merits of a SMC with the robust characteristics and a WNNC, which combines artificial neural networks for their online learning ability and wavelet decomposition for its identification ability. Theoretical analyses of both SMC and WNNC speed controllers are developed. The WNN is utilized to predict the uncertain system dynamics to relax the requirement of uncertainty bound in the design of a SMC. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode speed controller. An experimental system is established to verify the effectiveness of the proposed control system. All of the control algorithms are implemented on a TMS320C31 DSP-based control computer. The simulated and experimental results confirm that the proposed RWNNC grants robust performance and precise response regardless of load disturbances and PMSM parameter uncertainties.

Self-Recurrent Wavelet Neural Network Based Terminal Sliding Mode Control of Nonlinear Systems with Uncertainties (불확실성을 갖는 비선형 시스템의 자기 회귀 웨이블릿 신경망 기반 터미널 슬라이딩 모드 제어)

  • Lee, Sin-Ho;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.315-317
    • /
    • 2006
  • In this paper, we design a terminal sliding mode controller based on neural network for nonlinear systems with uncertainties. Terminal sliding mode control (TSMC) method can drive the tracking errors to zero within finite time. Also, TSMC has the advantages such as improved performance, robustness, reliability and precision by contrast with classical sliding mode control. For the control of nonlinear system with uncertainties, we employ the self-recurrent wavelet neural network(SRWNN) which is used for the prediction of uncertainties. The weights of SRWNN are trained by adaptive laws based on Lyapunov stability theorem. Finally, we carry out simulations to illustrate the effectiveness of the proposed control.

  • PDF

Path Tracking Control Using a Wavelet Neural Network for Mobile Robot with Extended Kalman Filter

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2498-2501
    • /
    • 2003
  • In this paper, we present a wavelet neural network (WNN) approach to the solution of the path tracking problem for mobile robots that possess complexity, nonlinearity and noise. First, we discuss a WNN based control system where the control signals are directly obtained by minimizing the difference between the reference track and the pose of a mobile robot. This compact network structure is helpful to determine the number of hidden nodes and the initial value of weights. Then, the data with various noises provided by odometric and external sensors are here fused together by means of an Extended Kalman Filter (EKF) approach for the pose estimation problem of mobile robots. This control process is a dynamic on-line process that uses the wavelet neural network trained via the gradient-descent method with estimates from EKF. Finally, we verify the effectiveness and feasibility of the proposed control system through simulations.

  • PDF

A novel Kohonen neural network and wavelet transform based approach to Industrial load forecasting for peak demand control (최대수요관리를 위한 코호넨 신경회로망과 웨이브릿 변환을 이용한 산업체 부하예측)

  • Kim, Chang-Il;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.301-303
    • /
    • 2000
  • This paper presents Kohonen neural network and wavelet transform analysis based technique for industrial peak load forecasting for the purpose of peak demand control. Firstly, one year of historical load data were sorted and clustered into several groups using Kohonen neural network and then wavelet transforms are adopted using the Biorthogonal mother wavelet in order to forecast the peak load of one hour ahead. The 5-level decomposition of the daily industrial load curve is implemented to consider the weather sensitive component of loads effectively. The wavelet coefficients associated with certain frequency and time localization is adjusted using the conventional multiple regression method and the components are reconstructed to predict the final loads through a six-scale synthesis technique.

  • PDF

Plasma Diagnosis by Using Atomic Force Microscopy and Neural Network (Atomic Force Microscopy와 신경망을 이용한 플라즈마 진단)

  • Park, Min-Gun;Kim, Byung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.138-140
    • /
    • 2006
  • A new diagnosis model was constructed by combining atomic force microscopy (AFM), wavelet, and neural network. Plasma faults were characterized by filtering AFM-measured etch surface roughness with wavelet. The presented technique was evaluated with the data collected during the etching of silicon oxynitride thin film. A total of 17 etch experiments were conducted. Applying wavelet to AFM, surface roughness was detailed into vertical, horizon%at, and diagonal components. For each component, neural network recognition models were constructed and evaluated. Comparisons revealed that the vertical component-based model yielded about 30% improvement in the recognition accuracy over others. The presented technique was evaluated with the data collected during the etching of silicon oxynitride thin film. A total of 17 etch experiments were conducted

  • PDF

Design of Adaptive Velocity Controller for Wind Turbines Using Self Recurrent Wavelet Neural Network (자기회귀 웨이블릿 신경망을 이용한 풍력 발전 시스템의 적응 속도 제어기 설계)

  • Song, Seung-Kwan;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1691-1692
    • /
    • 2008
  • In this paper, the adaptive neural network technique is proposed to control the speed of wind power generation system. For maximizing generated power effectively, adaptive neural algorithm based on SRWMM(Self Recurrent Wavelet Neural Network) is derived to on-line adjust the excitation winding voltage of the generator. Through computer simulations, it is shown that the proposed method can achieve smooth and asymptotic rotor speed tracking.

  • PDF

Self-Recurrent Wavelet Neural Network Based Direct Adaptive Control for Stable Path Tracking of Mobile Robots

  • You, Sung-Jin;Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.640-645
    • /
    • 2004
  • This paper proposes a direct adaptive control method using self-recurrent wavelet neural network (SRWNN) for stable path tracking of mobile robots. The architecture of the SRWNN is a modified model of the wavelet neural network (WNN). Unlike the WNN, since a mother wavelet layer of the SRWNN is composed of self-feedback neurons, the SRWNN has the ability to store the past information of the wavelet. For this ability of the SRWNN, the SRWNN is used as a controller with simpler structure than the WNN in our on-line control process. The gradient-descent method with adaptive learning rates (ALR) is applied to train the parameters of the SRWNN. The ALR are derived from discrete Lyapunov stability theorem, which are used to guarantee the stable path tracking of mobile robots. Finally, through computer simulations, we demonstrate the effectiveness and stability of the proposed controller.

  • PDF