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Abstract: This paper proposes a direct adaptive control method using self-recurrent wavelet neural network (SRWNN) for

stable path tracking of mobile robots. The architecture of the SRWNN is a modified model of the wavelet neural network

(WNN). Unlike the WNN, since a mother wavelet layer of the SRWNN is composed of self-feedback neurons, the SRWNN has

the ability to store the past information of the wavelet. For this ability of the SRWNN, the SRWNN is used as a controller

with simpler structure than the WNN in our on-line control process. The gradient-descent method with adaptive learning rates

(ALR) is applied to train the parameters of the SRWNN. The ALR are derived from discrete Lyapunov stability theorem, which

are used to guarantee the stable path tracking of mobile robots. Finally, through computer simulations, we demonstrate the

effectiveness and stability of the proposed controller.
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1. Introduction

In recent years, mobile robots have been used as the applica-

tions of many areas, such as room cleaning, disabled people

assistance, and factory automation. These applications re-

quire mobile robots to have the ability to track stably the

path. Thus, the stable path tracking problems of mobile

robots are a fundamentally important issue and have been

studied by many researchers.

In the meanwhile, neural network (NN) has been used as

a good tool to control an autonomous mobile robot [1] [2]

because no mathematical models are needed and it can eas-

ily be applied to nonlinear and linear systems. But, NN

have some drawbacks, which come from their inherent char-

acteristics, such as slow convergence, settlement of local min-

ima. Accordingly, recently wavelet neural network (WNN),

which absorbs the advantages of high resolution of wavelets

and learning of NN, has been proposed to guarantee the fast

convergence and is used for identifying and controlling the

nonlinear system [3]. However, WNN does not require prior

knowledge about the plant to be controlled due to its feed-

forward structure. Accordingly, WNN cannot adapt rapidly

under the circumstances to change frequently the operating

conditions and dynamics’ parameters like to the operation

environment of mobile robots. To overcome problems, we

use the self-recurrent wavelet neural network (SRWNN) that

we proposed in [4]. Since the SRWNN, a modified WNN, has

a mother wavelet layer composed of self-feedback neurons, it

can capture a past information of the network and adapt

rapidly to sudden changes of the control environment. Due

to these properties, the structure of the SRWNN can be sim-

pler than that of the WNN.

In this paper, we propose the design method of the SR-

WNN based direct adaptive controller for the stable path

tracking of the mobile robot. Two SRWNNs are used as

each controller in our control scheme for generating two con-

trol inputs, the translational and rotational displacement

of the robot. The SRWNN controllers are trained by the

gradient-descent (GD) method using the adaptive learning

rates (ALR). The suitable ALR of controllers for mobile

robots are derived in the sense of discrete Lyapunov sta-

bility analysis, which are used to guarantee the convergence

of the SRWNN controllers in the proposed control system.

This paper is organized as follows. In Section 2, we present

some basics of mobile robots and SRWNN. Section 3 dis-

cusses the SRWNN based direct adaptive control strategy as

applied to the tracking problem. The stability of the control

system is analyzed and then the ALR are derived in Section

4. Section 5 presents a simulation result. Finally, Section 6

gives some concluding remarks.

2. Preliminaries
2.1. The model for mobile robot

The model of mobile robot used in this paper has two op-

posed drive wheels, mounted on the left and right sides of the

robot, and a caster. In this model, the location of the robot

be represented by three states, the coordinates (xc, yc) of the

midpoint between the two driving wheels and the orientation

angle θ, as shown in Fig. 1.

The motion dynamics of robot in a global coordinate frame

can then be expressed as follows [5]:

⎡⎢⎣ xc(n + 1)

yc(n + 1)

θ(n + 1)

⎤⎥⎦ =

⎡⎢⎣ xc(n)

yc(n)

θ(n)

⎤⎥⎦ +

⎡⎢⎣ δd(n)con(θ(n) + δθ(n)
2

)

δd(n)sin(θ(n) + δθ(n)
2

)

δθ(n)

⎤⎥⎦ (1)

where, δd = dR+dL
2

and δθ = dR−dL
b

are used as control

inputs. Here, dR and dL denote the distances, traveled by the

right and the left wheel respectively. Also, b is the distance

between the wheels.
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Fig. 1. The representation of the state vector of the mobile

robot in a global coordinate frame

2.2. Self-recurrent wavelet neural network

A schematic diagram of the SRWNN structure is shown in

Fig. 2, which has Ni inputs, one output, and Ni×Nw mother

wavelets. The SRWNN structure consists of four layers.

The layer 1 is an input layer. This layer accepts the input

variables and transmits the accepted inputs to the next layer

directly.

The layer 2 is a mother wavelet layer. Each node of this layer

has a mother wavelet and a self-feedback loop. In this paper,

we select the first derivative of a gaussian function, φ(x) =

−xexp(− 1
2
x2) as a mother wavelet function. A wavelet φjk

of each node is derived from its mother wavelet φ as follows:

φjk(zjk) = φ(
ujk − mjk

djk
), with zjk =

ujk − mjk

djk
(2)

where, mjk and djk are the translation factor and the dila-

tion factor of the wavelets, respectively. The subscript jk

indicates the kth input term of the jth wavelet. In addition,

the inputs of this layer for discrete time n can be denoted by

ujk(n) = xk(n) + φjk(n − 1) · αjk (3)

where, αjk denotes the weight of the self-feedback loop. The

input of this layer contains the memory term φjk(n − 1),

which can store the past information of the network. That

is, the current dynamics of the system is conserved for the

next sample step. Thus, even if the SRWNN has less mother

wavelets than the WNN, the SRWNN can attract nicely the

system with complex dynamics. Here, αjk is a factor to

represent the rate of information storage. These aspects are

the apparent dissimilar point between the WNN and the

SRWNN. And also, the SRWNN is a generalization system

of the WNN because the SRWNN structure is the same as

the WNN structure when αjk = 0.

The layer 3 is a product layer. The nodes in this layer are

given by the product of the mother wavelets as follows:

Φj(x) =

Ni∏
k=1

φ(zjk)

=

Ni∏
k=1

[
−
(

ujk − mjk

djk

)
exp

(
−1

2

(
ujk − mjk

djk

)2
)]
(4)
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Fig. 2. The proposed SRWNN structure

The layer 4 is an output layer. The node output is a linear

combination of consequences obtained from the output of the

layer 3. In addition, the output node accepts directly input

values from the input layer. Therefore, the SRWNN output

y(n) is composed by self-recurrent wavelets and parameters

as follows:

y(n) =

Nw∑
j=1

wjΦj(x) +

Ni∑
k=1

akxk (5)

where, wj is the connection weight between product nodes

and output nodes, and aj is the connection weight between

the input nodes and the output node. The weighting vector

W of SRWNN is represented by

W = [ak mjk djk αk wj ]
T (6)

where, the initial values of tuning parameters ak, mjk, djk,

and wj are given randomly in the range of [-1 1] but djk > 0.

And also, the initial values of αjk are given by 0. That is,

there are no feedback units initially.

3. Control design for mobile robots
3.1. SRWNN Controller

In this section, we design the SRWNN based direct adaptive

control system for path tracking of mobile robot. Since the

kinematics of the mobile robot consists of 2 inputs and 3 out-

puts, 2 SRWNN controllers must be used for generating each

control input δd and δθ. The overall controller architecture

based on direct adaptive control scheme is shown in Fig. 3.

In this architecture, the SRWNNC1 and SRWNNC2 denote

two SRWNN controllers for controlling the control input δd

and δθ, respectively. The past control signal δd(n − 1), the

past errors ex(n − 1), and ey(n − 1) are fed into the SR-

WNNC1 so that the current input δd(n) is generated. And

also, the inputs of the SRWNNC2, such as the past control

signal δθ(n − 1), the past errors ex(n − 1), ey(n − 1), and

eθ(n − 1), are used for generating the current control signal

δθ(n). Accordingly, two cost functions must be defined to

select optimal control signals.
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3.2. Training algorithm

Let us define cost functions as

J1(n) =
1

2
e2

x(n) +
1

2
e2

y(n) (7)

J2(n) =
1

2
e2

θ(n) (8)

where, ex(n) = xr(n) − xc(n), ey(n) = yr(n) − yc(n), and

eθ(n) = θr(n)− θ(n). Here, xr, yr, and θr denote the states

of the mobile robot for the reference trajectory.

By using the GD method, the weight values of SRWNNC1

and SRWNNC2 are adjusted so that cost functions are min-

imized after a given number of training cycles. The GD

method for each cost functions may be defined as

W1,2(n + 1) = W1,2(n) + ∆W1,2(n)

= W1,2(n) + η̄1,2

(
− ∂J1,2(n)

∂W1,2(n)

)
(9)

where, W1,2 denote each weighting vectors of the

SRWNNC1 and SRWNNC2, respectively. η̄1,2 =

diag[ηa
1,2, ηm

1,2, ηd
1,2, ηα

1,2, ηw
1,2] are learning rate ma-

trices for weights of the SRWNNC1 and SRWNNC2. The

gradient of cost functions J1 and J2 with respect to weight-

ing vectors W1 and W2 of the controllers, respectively, are

∂J1(n)

∂W1(n)
= −ex(n)

∂xc(n)

∂W1(n)
− ey(n)

∂yc(n)

∂W1(n)

= −
[
ex(n)

∂xc(n)

∂u1(n)
+ ey(n)

∂yc(n)

∂u1(n)

]
∂u1(n)

∂W1(n)
(10)

∂J2(n)

∂W2(n)
= −eθ(n)

∂θ(n)

∂W2(n)

= −eθ(n)
∂θ(n)

∂u2(n)

∂u2(n)

∂W2(n)
(11)

where, u1(n) = δd(n) and u2(n) = δθ(n). And ∂xc(n)
∂u1(n)

,
∂yc(n)
∂u1(n)

, and ∂θ(n)
∂u2(n)

denote the system sensitivity. It can be

computed from Eq. (1). And also, the components of Ja-

cobian of the control inputs u1 and u2 with respect to each

weighting vector W1,2 are computed by Eq. (5) as follows:

∂u1,2(n)

∂a1,2k(n)
= x1,2k (12)

∂u1,2(n)

∂m1,2jk(n)
= − w1,2j

d1,2jk

∂Φ1,2j(x)

∂z1,2jk
(13)
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Fig. 3. The proposed control structure for mobile robot

∂u1,2(n)

∂d1,2jk(n)
= − w1,2j

d1,2jk
z1,2jk

∂Φ1,2j(x)

∂z1,2jk
(14)

∂u1,2(n)

∂α1,2jk(n)
=

w1,2j

d1,2jk
φ1,2jk(n − 1)

∂Φ1,2j(x)

∂z1,2jk
(15)

∂u1,2(n)

∂w1,2j(n)
= Φ1,2j(x) (16)

where,
∂Φ1,2j

∂z1,2jk
= φ(z1,2j1)φ(z1,2j2) · · · φ̇(z1,2jk) · · ·φ(z1,2jNi)

and φ̇(z1,2jk) =
∂φ1,2j

∂z1,2jk
= (z2

1,2jk − 1)exp(− 1
2
z2
1,2jk).

4. Stability analysis
In this section, we analyze the stability of the proposed con-

troller for stable path tracking of mobile robots. Though the

cost function of each controller is designed differently, one

Lyapunov function for analyzing the stability of the unified

control system is defined out of consideration for two control

inputs. The convergence of the SRWNNC1 and SRWNNC2,

which are trained with GD method, is related to select the

appropriate learning rates. To solve this problem, we de-

velop some convergence theorems for selecting appropriate

learning rates adaptively.

Let us define a discrete Lyapunov function as

V (n) =
1

2
[e2

x(n) + e2
y(n) + e2

θ(n)] (17)

where, ex(n), ey(n), and eθ(n) are the control errors. The

change in the Lyapunov function is obtained by

∆V (n) = V (n + 1) − V (n)

=
1

2
[e2

x(n + 1) − e2
x(n)

+ e2
y(n + 1) − e2

y(n) + e2
θ(n + 1) − e2

θ(n)] (18)

Three error differences can be represented by [6]

∆ex(n) = ex(n + 1) − ex(n)

≈
[

∂ex(n)

∂W i
1(n)

]T

∆W i
1(n) (19)

∆ey(n) = ey(n + 1) − ey(n)

≈
[

∂ey(n)

∂W i
1(n)

]T

∆W i
1(n) (20)

∆eθ(n) = eθ(n + 1) − eθ(n)

≈
[

∂eθ(n)

∂W i
2(n)

]T

∆W i
2(n) (21)

where, W i
1(n) and W i

2(n) are an arbitrary component of the

weighting vectors W1(n) and W2(n). And the corresponding

changes of them are denoted by ∆W i
1(n) and ∆W i

2(n). Using

Eq. (9)∼(11), ∆W1,2 are obtained by

∆W i
1(n) = ηi

1

[
ex(n)

∂xc(n)

∂u1(n)
+ ey(n)

∂yc(n)

∂u1(n)

]
∂u1(n)

∂W i
1(n)

(22)
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∆W i
2(n) = ηi

2eθ(n)
∂θ(n)

∂u2(n)

∂u2(n)

∂W i
2(n)

. (23)

where ηi
1 and ηi

2 are an arbitrary diagonal element of the

learning rate matrices η̄1 and η̄2 corresponding to the weight

component W i
1(n) and W i

2(n).

Theorem 1: Let η̄1,2 = [η1
1,2 η2

1,2 η3
1,2 η4

1,2 η5
1,2] =

[ηa
1,2 ηm

1,2 ηd
1,2 ηα

1,2 ηw
1,2] be the learning rates for the

weights of the SRWNNC1 and SRWNNC2 and define

C1,2,max as

C1,2,max = [C1
1,2,max C2

1,2,max C3
1,2,max C4

1,2,max C5
1,2,max]T

=

[
maxn

∣∣∣∣∂u1,2(n)

∂a1,2(n)

∣∣∣∣ maxn

∣∣∣∣ ∂u1,2(n)

∂m1,2(n)

∣∣∣∣
maxn

∣∣∣∣∂u1,2(n)

∂d1,2(n)

∣∣∣∣ maxn

∣∣∣∣ ∂u1,2(n)

∂α1,2(n)

∣∣∣∣ maxn

∣∣∣∣ ∂u1,2(n)

∂w1,2(n)

∣∣∣∣]T

Then, the asymptotic convergence of the SRWNNC1 and

SRWNNC2 is guaranteed if ηi
1,2 are chosen to satisfy

0 < ηi
1 <

2

(S2
x + S2

y)(Ci
1,max)2

(24)

0 < ηi
2 <

2

(SθCi
2,max)2

(25)

where i = 1, ...5, Sx = ∂xc(n)
∂u1(n)

, Sy = ∂yc(n)
∂u1(n)

, and Sθ = ∂θ(n)
∂u2(n)

.

Proof: From Eq. (17), V (n) > 0. Using Eq. (19) ∼
(23), the change in the Lyapunov function is

∆V (n) = V (n + 1) − V (n)

=
1

2
[e2

x(n + 1) − e2
x(n)

+ e2
y(n + 1) − e2

y(n) + e2
θ(n + 1) − e2

θ(n)]

= ∆ex(n)

[
ex(n) +

1

2
∆ex(n)

]
+ ∆ey(n)

[
ey(n) +

1

2
∆ey(n)

]
+ ∆eθ(n)

[
eθ(n) +

1

2
∆eθ(n)

]
= −

[
∂u1(n)

∂W i
1(n)

]T

ηi
1(ex(n)Sx + ey(n)Sy)

∂u1(n)

∂W i
1(n)

·
[
(ex(n)Sx + ey(n)Sy) − 1

2

[
∂u1(n)

∂W i
1(n)

]T

· ηi
1(ex(n)Sx + ey(n)Sy)

∂u1(n)

∂W i
1(n)

(S2
x + S2

y)

]
−
[

∂u2(n)

∂W i
2(n)

]T

Sθηi
2eθ(n)Sθ

∂u2(n)

∂W i
2(n)

·
[
eθ − 1

2

[
∂u2(n)

∂W i
2(n)

]T

Sθηi
2eθ(n)Sθ

∂u2(n)

∂W i
2(n)

]

= −(ex(n)Sx + ey(n)Sy)2
[
ηi
1

∥∥∥∥ ∂u1(n)

∂W i
1(n)

∥∥∥∥2

·
(

1 − 1

2
(S2

x + S2
y)ηi

1

∥∥∥∥ ∂u1(n)

∂W i
1(n)

∥∥∥∥2
)]

− e2
θ(n)S2

θ

[
ηi
2

∥∥∥∥ ∂u2(n)

∂W i
2(n)

∥∥∥∥2
(

1 − 1

2
ηi
2S

2
θ

∥∥∥∥ ∂u2(n)

∂W i
2(n)

∥∥∥∥2
)]

= −(ex(n)Sx + ey(n)Sy)2ρ − e2
θ(n)γ

where,

ρ ≥ ηi
1

∥∥∥∥ ∂u1(n)

∂W i
1(n)

∥∥∥∥2 (
1 − 1

2
(S2

x + S2
y)ηi

1(C
i
1,max)2

)

γ ≥ ηi
2

∥∥∥∥ ∂u2(n)

∂W i
2(n)

∥∥∥∥2 (
1 − 1

2
ηi
2S

2
θ (Ci

2,max)2
)

If ρ > 0 and γ > 0 are satisfied, ∆V (n) < 0. Thus, the

asymptotic convergence of the proposed control system are

guaranteed. Here, we obtain Eqs. (24) and (25). This com-

pletes the proof of the theorem.

Theorem 2: Let ηa
1 and ηa

2 be the learning rates for the

input direct weights of the SRWNNC1 and the SRWNNC2.

The asymptotic convergences of the SRWNNC1 and the SR-

WNNC2 are guaranteed if the learning rates ηa
1 and ηa

2 sat-

isfies:

0 < ηa
1 <

2

(S2
x + S2

y)N1i|x1max|2 (26)

0 < ηa
2 <

2

S2
θN2i|x2max|2 (27)

where, N1i and N2i denote the input number of the SR-

WNNC1 and the SRWNNC2, respectively. x1max and x2max

are the maximum value of each controller’s input, respec-

tively.

Proof:

C1
1 (n) =

∂u1(n)

∂a1(n)
=

N1i∑
k=1

x1k <
√

N1i|x1max|

And also, C1
2 (n) can be determined by the same method as

C1
1 (n). Therefore, from Theorem 1 , we obtain (26) and (27).

In order to prove Theorem 3, the following lemmas are used.

Lemma 1: Let f(t) = texp(−t2). Then |f(t)| < 1, ∀f ∈ R.

Lemma 2: Let g(t) = t2exp(−t2). Then |g(t)| < 1, ∀g ∈ R.

Theorem 3: Let ηm
1,2, ηd

1,2 and ηα
1,2 be the learning rates

of the translation, dilation and self-feedback weights for the

SRWNNC1 and the SRWNNC2, respectively. The asymp-

totic convergence is guaranteed if the learning rates satisfy:

0 < ηm
1 , ηα

1 <
2

(S2
x + S2

y)N1wN1i

⎡⎣ 1

|w1,max|
(

2exp(−0.5)
|d1,min|

)
⎤⎦2

(28)

0 < ηm
2 , ηα

2 <
2

S2
θN2wN2i

⎡⎣ 1

|w2,max|
(

2exp(−0.5)
|d2,min|

)
⎤⎦2

(29)

0 < ηd
1 <

2

(S2
x + S2

y)N1wN1i

⎡⎣ 1

|w1,max|
(

2exp(0.5)
|d1,min|

)
⎤⎦2

(30)

0 < ηd
2 <

2

S2
θN2wN2i

⎡⎣ 1

|w2,max|
(

2exp(0.5)
|d2,min|

)
⎤⎦2

(31)

where, N1w and N2w are the number of nodes in the product

layer of the SRWNNC1 and the SRWNNC2, respectively.
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Proof:

1) The learning rate ηm
1 of the translation weight m1:

C2
1 (n) =

∂u1(n)

∂m1(n)

=

N1w∑
j=1

w1,j

(
∂Φ1j

∂m1

)

<

N1w∑
j=1

w1,j

{
N1i∑
k=1

max

(
∂φ(z1,jk)

∂z1,jk

∂z1,jk

∂m1

)}
(32)

<

N1w∑
j=1

w1,j

{
N1i∑
k=1

max

(
2exp(−0.5)

(
− 1

d1

))}
(33)

<
√

N1w

√
N1i|w1,max|

∣∣∣∣2exp(−0.5)

d1,min

∣∣∣∣
According to Lemma 2,∣∣∣∣( 1

2
z2
1,jk − 1

2

)
exp

{
−
(

1

2
z2
1,jk − 1

2

)}∣∣∣∣ < 1

Thus, eq. (32) is clearly smaller than eq. (33). And, C2
2 (n)

can be determined by the same method as C2
1 (n). Accord-

ingly, from Theorem 1, we can find Eqs. (28) and (29).

2) The learning rate ηd
1 of the dilation weight d1 :

C3
1 (n) =

∂u1(n)

∂d1(n)

=

N1w∑
j=1

w1,j

(
∂Φ1,j

∂d1

)

<

N1w∑
j=1

w1,j

{
N1i∑
k=1

max

(
∂φ(z1,jk)

∂z1,jk

∂z1,jk

∂d1

)}
(34)

<

N1w∑
j=1

w1,j

{
N1i∑
k=1

max

(
2exp(0.5)

(
1

d1

))}
(35)

<
√

N1w

√
N1i|w1,max|

∣∣∣∣2exp(0.5)

d1,min

∣∣∣∣
According to Lemma 1 and Lemma 2,∣∣z1,jkexp

(−z2
1,jk

)∣∣ < 1∣∣∣∣( 1

2
− 1

2
z2
1,jk

)
exp

{
−
(

1

2
− 1

2
z2
1,jk

)}∣∣∣∣ < 1

Thus, eq. (34) is clearly smaller than eq. (35). And, C3
2 (n)

can be determined by the same method as C3
1 (n). Accord-

ingly, from Theorem 1, we can find Eqs. (30) and (31).

3) The learning rate ηα
1 of the self-feedback weight α1 :

C4
1 (n) =

∂u1(n)

∂α1(n)

=

N1w∑
j=1

w1,j

(
∂Φ1,j

∂α1

)

<

N1w∑
j=1

w1,j

{
N1i∑
k=1

max

(
∂φ(z1,jk)

∂z1,jk

∂z1,jk

∂α1

)}
(36)

<

N1w∑
j=1

w1,j

{
N1i∑
k=1

max

(
2exp(−0.5)

(
φ1,jk(n − 1)

d1

))}
(37)

<
√

N1w

√
N1i|w1,max|

∣∣∣∣2exp(−0.5)

d1,min

∣∣∣∣

According to Lemma 2,∣∣∣∣( 1

2
z2
1,jk − 1

2

)
exp

{
−
(

1

2
z2
1,jk − 1

2

)}∣∣∣∣ < 1

Thus, eq. (36) is clearly smaller than eq. (37). And, C4
2 (n)

can be determined by the same method as C4
1 (n). Accord-

ingly, from Theorem 1, we can find Eqs. (28) and (29).

Theorem 4: Let ηw
1 and ηw

2 be the learning rates for the

weight w1 of the SRWNNC1 and the weight w2 of the SR-

WNNC2. Then, the asymptotic convergence is guaranteed

if the learning rates satisfy:

0 < ηw
1 < 2

N1w

0 < ηw
2 < 2

N2w

Proof:

C5
1 (n) =

∂u1(n)

∂w1
=

N1w∑
j=1

Φ1,j (38)

Then, since we have Φ1,j ≤ 1 for all j, |C5
1 (n)| ≤ √

N1w. And

also, C5
2 (n) can be determined by the same method as C5

1 (n).

Accordingly, from Theorem 1, we find that 0 < ηw
1 < 2/N1w

and 0 < ηw
2 < 2/N2w.

5. Simulation result
To visualize the validity of the proposed SRWNN controllers

based on indirect adaptive control scheme, we present a simu-

lation result for the stable path tracking of the mobile robot.

The design parameters of our control system are chosen as

b = 60, N1w = N2w = 1, N1i = 3, and N2i = 4. That is, the

structures of the SRWNNC1 and SRWNNC2 are designed

very simply. The ALR is used for training the SRWNNC1

and SRWNNC2. The sampling time is 0.01 and the depar-

ture posture is (5, 5, π/8). In this simulation, to examine the

tracking performance of both the curved line and straight

line, the reference trajectory is generated by the following

control inputs.

u1 = 20cm/sec, u2 = 0rad/sec (0 ≤ t < 5)

u1 = 30cm/sec, u2 = 1rad/sec (5 ≤ t < 10)

u1 = 30cm/sec, u2 = −1rad/sec (10 ≤ t < 15)

u1 = 20cm/sec, u2 = 0rad/sec (15 ≤ t ≤ 20)

Figure 4 presents the tracking control result for the pro-

posed control system and Fig. 5 shows the control errors.

The ALR for training the SRWNNC1 and SRWNNC2 are

shown in Figs. 6 and 7. The learning rates of the weight

w1,2 are chosen as 1 by Theorem 4. Note that the optimal

learning rates during the path change are found by the ALR

algorithm. In Fig. 4, we can observe that SRWNNC1 and

SRWNNC2 using the ALR can adapt stably to the variation

of the complex path. The control performance measure is

tabulated in Table 1 using the mean-squared error (MSE) as

the performance index. From the results of Table 1, we can

observe that the proposed controllers using the ALR have a

good performance.
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6. Conclusion

A SRWNN-based adaptive direct control scheme for mobile

robots has been proposed. In control scheme, two SRWNN

controllers have been designed for generating the control in-

puts. The structures of two SRWNNs have been trained by

the GD method. Since the SRWNN has the ability for stor-

ing the past information of the network, it can adapt rapidly

to changes of the operation environment of mobile robots.

Using the discrete Lyapunov theorem, stability of the whole

control scheme has been carried out and the ALR has been

also established for the stable path tracking of the mobile

robot. A simulation result has shown that the proposed con-

trol system has an on-line adapting ability for controlling the

mobile robot.

Table 1. The tracking control errors
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0.0008 0.0009 0.00007
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Fig. 7. The ALR of the SRWNNC2
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