• 제목/요약/키워드: Wavelet features

검색결과 387건 처리시간 0.032초

Feature Extraction and Statistical Pattern Recognition for Image Data using Wavelet Decomposition

  • Kim, Min-Soo;Baek, Jang-Sun
    • Communications for Statistical Applications and Methods
    • /
    • 제6권3호
    • /
    • pp.831-842
    • /
    • 1999
  • We propose a wavelet decomposition feature extraction method for the hand-written character recognition. Comparing the recognition rates of which methods with original image features and with selected features by the wavelet decomposition we study the characteristics of the proposed method. LDA(Linear Discriminant Analysis) QDA(Quadratic Discriminant Analysis) RDA(Regularized Discriminant Analysis) and NN(Neural network) are used for the calculation of recognition rates. 6000 hand-written numerals from CENPARMI at Concordia University are used for the experiment. We found that the set of significantly selected wavelet decomposed features generates higher recognition rate than the original image features.

  • PDF

색상특징과 웨이블렛 기반의 특징을 이용한 영상 검색 (Image Retrieval Using the Color Feature and the Wavelet-Based Feature)

  • 박종현;박순영;조완현
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.487-490
    • /
    • 1999
  • In this paper we propose an efficient content-based image retrieval method using the color and wavelet based features. The color features are extracted from color histograms of the global image and the wavelet based features are extracted from the invariant moments of the high-pass band image through the spatial-frequency analysis of the wavelet transform. The proposed algorithm, called color and wavelet features based query(CWBQ), is composed of two-step query operations for efficient image retrieval: the coarse level filtering operation and the fine level matching operation. In the first filtering operation, the color histogram feature is used to filter out the dissimilar images quickly from a large image database. The second matching operation applies the wavelet based feature to the retained set of images to retrieve all relevant images successfully. The experimental results show that the proposed algorithm yields more improved retrieval accuracy with computationally efficiency than the previous methods.

  • PDF

음성 특징의 효율성 (EFFICIENCY OF SPEECH FEATURES)

  • 황규웅
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1995년도 제12회 음성통신 및 신호처리 워크샵 논문집 (SCAS 12권 1호)
    • /
    • pp.225-227
    • /
    • 1995
  • This paper compared waveform, cepstrum, and spline wavelet features with nonlinear discriminant analysis. This measure shows efficiency of speech parametrization better than old linear separability criteria and can be used to measure the efficiency of each layer of certain system. Spline wavelet transform has larger gap among classes and cepstrum is clustered better than the spline wavelet feature. Both features do not have good property for classification and we will compare Gabor wavelet transform, Mel cepstrum, delta cepstrum, etc.

  • PDF

SWT -based Wavelet Filter Application for De-noising of Remotely Sensed Imageries

  • Yoo Hee-Young;Lee Kiwon;Kwon Byung-Doo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.505-508
    • /
    • 2005
  • Wavelet scheme can be applied to the various remote sensing problems: conventional multi-resolution image analysis, compression of large image sets, fusion of heterogeneous sensor image and segmentation of features. In this study, we attempted wavelet-based filtering and its analysis. Traditionally, statistical methods and adaptive filter are used to manipulate noises in the image processing procedure. While we tried to filter random noise from optical image and radar image using Discrete Wavelet Transform (DW1) and Stationary Wavelet Transform (SW1) and compared with existing methods such as median filter and adaptive filter. In result, SWT preserved boundaries and reduced noises most effectively. If appropriate thresholds are used, wavelet filtering will be applied to detect road boundaries, buildings, cars and other complex features from high-resolution imagery in an urban environment as well as noise filtering

  • PDF

Comparison of wavelet-based decomposition and empirical mode decomposition of electrohysterogram signals for preterm birth classification

  • Janjarasjitt, Suparerk
    • ETRI Journal
    • /
    • 제44권5호
    • /
    • pp.826-836
    • /
    • 2022
  • Signal decomposition is a computational technique that dissects a signal into its constituent components, providing supplementary information. In this study, the capability of two common signal decomposition techniques, including wavelet-based and empirical mode decomposition, on preterm birth classification was investigated. Ten time-domain features were extracted from the constituent components of electrohysterogram (EHG) signals, including EHG subbands and EHG intrinsic mode functions, and employed for preterm birth classification. Preterm birth classification and anticipation are crucial tasks that can help reduce preterm birth complications. The computational results show that the preterm birth classification obtained using wavelet-based decomposition is superior. This, therefore, implies that EHG subbands decomposed through wavelet-based decomposition provide more applicable information for preterm birth classification. Furthermore, an accuracy of 0.9776 and a specificity of 0.9978, the best performance on preterm birth classification among state-of-the-art signal processing techniques, were obtained using the time-domain features of EHG subbands.

무인차량 적용을 위한 영상 기반의 지형 분류 기법 (Vision Based Outdoor Terrain Classification for Unmanned Ground Vehicles)

  • 성기열;곽동민;이승연;유준
    • 제어로봇시스템학회논문지
    • /
    • 제15권4호
    • /
    • pp.372-378
    • /
    • 2009
  • For effective mobility control of unmanned ground vehicles in outdoor off-road environments, terrain cover classification technology using passive sensors is vital. This paper presents a novel method far terrain classification based on color and texture information of off-road images. It uses a neural network classifier and wavelet features. We exploit the wavelet mean and energy features extracted from multi-channel wavelet transformed images and also utilize the terrain class spatial coordinates of images to include additional features. By comparing the classification performance according to applied features, the experimental results show that the proposed algorithm has a promising result and potential possibilities for autonomous navigation.

공간 히스토그램과 웨이브릿 모멘트의 융합에 의한 영상검색 (Image Retrieval Using the Fusion of Spatial Histogram and Wavelet Moments)

  • 서상용;손재곤;김남철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(4)
    • /
    • pp.11-14
    • /
    • 2000
  • We present an image retrieval method that improves retrieval rate by using the fusion of histogram and wavelet moment features. The key idea is that images similar to a query image are selected in DB by using the wavelet moment features. Then the result images are retrieved from the selected images by using histogram method. In order to evaluate the performance of the proposed method, we use Brodatz texture database, MPEG-7 T1 database and Corel Draw photo. Experimental result shows that the proposed method is better than each of histogram method and wavelet moment method.

  • PDF

유방 종양 세포 조직 영상의 분류 (Classification of Breast Tumor Cell Tissue Section Images)

  • 황해길;최현주;윤혜경;남상희;최흥국
    • 융합신호처리학회논문지
    • /
    • 제2권4호
    • /
    • pp.22-30
    • /
    • 2001
  • 본 논문은 유방질환 중에서 유관(duct )에 발생하는 유방종양을 Benign, DCIS(ductal carcinoma in situ) NOS (invasive ductal carcinoma)로 분류하기 위해 3가지 분류기 (classifier) 를 생성한 후, 비교 분석하였다. 분류기 생성에서 가장 중요한 단계인 특징 추출 단계에서 세포핵의 기하학적 특징을 형태학적 특징을 추출하여 분류기를 생성하고 염색질 패턴의 내부적 변화를 나타내는 질감 특징을 추출하여 2가지 배율(100/400배)에서 2개의 분류기를 생성하였다. 400배 배율의 유방질환 영상에서 세포핵을 추출하여 핵의 형태학적 특징값인 핵의 면적, 둘레. 가로, 세로(장. 단축) 의 길이, 원형성의 비율을 구한 후 이 특징값들을 조합하여 판별분석에 의해 분류기를 생생하고, 분류 정확도를 검증하였다. 100배 배율과 400배의 배율의 유방질환 영상에서 1, 2, 3, 4 단계(level)의 wavelet 변환를 적용한 후, 분할된 서브밴드에서 GLCM(Gray Level Co-occurrence Matrix)을 이용하여 질감 특징(entropy Energy, Contrast, Homogeneity)를 추출하고, 이 특징값들을 조합하여 판변 분석에 의해 분류기를 생성한 후 분류 정확도를 검증하였다. 이 세 분류기를 비교 분석 하였을때 현민경 100배 배율의 영상을 3단계 wavelet 변환을 적용하고 질감 특징을 추출하여 생성한 분류기가 다른 두 분류기보다 유방 질환 Benign, DCIS; NOS를 분류하는데 더 나은 결과를 보였다.

  • PDF

운동 형상 분류를 위한 웨이블릿 기반 최소의 특징 선택 (Wavelet-Based Minimized Feature Selection for Motor Imagery Classification)

  • 이상홍;신동근;임준식
    • 한국콘텐츠학회논문지
    • /
    • 제10권6호
    • /
    • pp.27-34
    • /
    • 2010
  • 본 논문은 가중 퍼지소속함수 기반 신경망(neural network with weighted fuzzy membership functions, NEWFM)과 웨이블릿 기반의 특징 추출기법을 사용하여 왼쪽 또는 오른쪽의 운동 형상을 분류하는 방안을 제안하고 있다. 초기 특징을 추출하기 위해서 첫 번째 단계에서 웨이블릿 변환(wavelet transforms)을 이용하여 뇌파(electroencephalogram, EEG) 신호로부터 웨이블릿 계수들을 추출하였다. 두 번째 단계에서는 첫 번째 단계에서 추출한 웨이블릿 계수들을 통계적인 방법인 주파수 분포와 주파수 변동량을 이용하여 60개의 초기 특징을 추출하였다. 이들 60개의 초기 특징은 NEWFM에서 제공하는 비중복면적 분산 측정법에 의해 중요도가 가장 낮은 특징을 하나씩 제거되면서 정확도가 가장 높은 6개의 최소 특징을 선택되었다. 이들 6개의 최소 특징을 NEWFM의 입력으로 사용하여 86.43%의 정확도를 구하였다.

임의의 영역 안에 텍스처 표현을 위한 Wavelet및 Gabor 텍스처 기술자와 성능평가 (Gabor and Wavelet Texture Descriptors in Representing Textures in Arbitrary Shaped Regions)

  • 심동규
    • 한국멀티미디어학회논문지
    • /
    • 제9권3호
    • /
    • pp.287-295
    • /
    • 2006
  • 본 논문은 임의의 영역 안에 존재하는 텍스처를 검색하기 위한 wavelet과 Gabor기반 텍스처 표현 기법을 제안하고 이들의 검색성능을 평가한다. 지금까지 Gator 평면에서의 평균과 표준편차 특징 기술자가 직사각형안의 텍스처를 표현하기에 가장 적합한 것으로 알려져 있다. 하지만 임의의 영역 안의 물체를 표현하는 기술이 실제 검색이나 여러 다른 텍스처 표현 응용 예에 더욱 필요한 실정이다. 본 연구에서는 wavelet과 Gabor 필터에 기반한 특징 추출법을 제안하고 이들을 실제 텍스처 데이터 베이스에 적용해 본 결과, wavelet기반 특징 기술자가 Gator기반 기술자에 비하여 더욱 효과적임을 발견하였다. 특히 wavelet평면에서 표준편차와 엔트로피 특징을 사용함으로써 가장 좋은 검색 성능을 냄을 알 수 있었다. 또한, 본 논문에서는 다양한 실제 텍스처 영상을 가지고 wavelet과 Gator에 기반한 다양한 특징벡터에 따른 검객 성능을 평가하였다.

  • PDF