• 제목/요약/키워드: Wavelet Denoising

검색결과 137건 처리시간 0.024초

An Effective Denoising Method for Images Contaminated with Mixed Noise Based on Adaptive Median Filtering and Wavelet Threshold Denoising

  • Lin, Lin
    • Journal of Information Processing Systems
    • /
    • 제14권2호
    • /
    • pp.539-551
    • /
    • 2018
  • Images are unavoidably contaminated with different types of noise during the processes of image acquisition and transmission. The main forms of noise are impulse noise (is also called salt and pepper noise) and Gaussian noise. In this paper, an effective method of removing mixed noise from images is proposed. In general, different types of denoising methods are designed for different types of noise; for example, the median filter displays good performance in removing impulse noise, and the wavelet denoising algorithm displays good performance in removing Gaussian noise. However, images are affected by more than one type of noise in many cases. To reduce both impulse noise and Gaussian noise, this paper proposes a denoising method that combines adaptive median filtering (AMF) based on impulse noise detection with the wavelet threshold denoising method based on a Gaussian mixture model (GMM). The simulation results show that the proposed method achieves much better denoising performance than the median filter or the wavelet denoising method for images contaminated with mixed noise.

수중 음향 측정을 위한 새로운 임계치 함수에 의한 TI 웨이블렛 잡음제거 기법 (Translation-invariant Wavelet Denoising Method Based on a New Thresholding Function for Underwater Acoustic Measurement)

  • 최재용
    • 한국소음진동공학회논문집
    • /
    • 제16권11호
    • /
    • pp.1149-1157
    • /
    • 2006
  • Donoho et al. suggested a wavelet thresholding denoising method based on discrete wavelet transform. This paper proposes an improved denoising method using a new thresholding function based on translation-invariant wavelet for underwater acoustic measurement. The conventional wavelet thresholding denoising method causes Pseudo-Gibbs phenomena near singularities due to the lack of translation-invariant of the wavelet basis. To suppress Pseudo-Gibbs phenomena, a denoising method combining a new thresholding function based on the translation-invariant wavelet transform is proposed in this paper. The new thresholding function is a modified hard-thresholding to each node according to the discriminated threshold so as to reject unknown external noise and white gaussian noise. The experimental results show that the proposed method can effectively eliminate noise, extract characteristic information of radiated noise signals.

웨이브렛 변환을 이용한 음성신호의 잡음제거 (Denoising of Speech Signal Using Wavelet Transform)

  • 한미경;배건성
    • 한국음향학회지
    • /
    • 제19권5호
    • /
    • pp.27-34
    • /
    • 2000
  • This paper deals with speech enhancement methods using the wavelet transform. A cycle-spinning scheme and undecimated wavelet transform are used for denoising of speech signals, and then their results are compared with that of the conventional wavelet transform. We apply soft-thresholding technique for removing additive background noise from noisy speech. The symlets 8-tap wavelet and pyramid algorithm are used for the wavelet transform. Performance assessments based on average SNR, cepstral distance and informal subjective listening test are carried out. Experimental results demonstrate that both cycle-spinning denoising(CSD) method and undecimated wavelet denoising(CWD) method outperform conventional wavelet denoising(UWD) method in objective performance measure as welt as subjective listening test. The two methods also show less "clicks" that usually appears in the neighborhood of signal discontinuities.

  • PDF

웨이브렛을 이용한 잡음 제거 알고리즘 (Denoising Algorithm using Wavelet)

  • 배상범;김남호
    • 한국정보통신학회논문지
    • /
    • 제6권8호
    • /
    • pp.1139-1145
    • /
    • 2002
  • 웨이브렛 변환 데이터는 신호의 상세 정보를 포함하고 있으므로 주파수 대역별로 필터링할 수 있다. 따라서, 본 논문에서는 중요한 두 가지 잡음을 웨이브렛을 사용하여 제거하였다. AWGN 환경에 대해서 hard-threshold를 적용한 UDWT(undecimated discrete wavelet transform)를 사용하였으며, 임펄스 잡음환경에 대해서는 임계치에 의한 잡음 제거와 웨이브렛에 의한 신호의 slope를 이용하여, 잡음 제거 효과를 최대로 함과 동시에 원신호의 edge를 인식하도록 하였다. 이러한 잡음 제거 효과의 판단 기준으로 SNR을 사용하였으며, 테스트 신호로서 Blocks와 DTMF(dual tone multi frequency)를 사용하였다.

Wavelet Denoising Filter를 이용한 측위 정밀도 향상 기법 성능 (A Performance of Positioning Accuracy Improvement Scheme using Wavelet Denoising Filter)

  • 신동수;박지호;박영식;황유민;김진영
    • 한국위성정보통신학회논문지
    • /
    • 제9권3호
    • /
    • pp.9-14
    • /
    • 2014
  • 최근, 현대전은 GPS 위치측위를 바탕으로 정밀타격체계 및 미사일 방어체계가 핵심이 되어가고 있다. 하지만 군 환경 특성상 산악지형 및 시가전에서의 지형지물로 인한 large/small scale fading, 주파수 간섭 등으로 인해 오차를 가진 위치정보를 얻게 된다. 이는 아군 위치 파악 실패로 인한 지원 지연 및 유도탄 오폭으로 인명피해를 발생시키게 된다. 본 연구는 위치오차를 보정하기 위해 wavelet denoising filter를 이용한 간섭완화 측위기법을 제안한다. 실험 결과는 본 연구실에서 수행한 GPS/QZSS/Wi-Fi밀결합 측위 기법의 실증 테스트 결과와 wavelet denoising filter를 적용한 시스템의 시뮬레이션 결과로 간섭완화 성능을 나타낸다. Wavelet denoising filter를 적용한 시스템의 시뮬레이션 결과는 기존 GPS보다 평균 21.6% 의 정확도 향상을 보이며 제안한 시스템 모델의 우수성을 입증한다.

Gamma spectrum denoising method based on improved wavelet threshold

  • Xie, Bo;Xiong, Zhangqiang;Wang, Zhijian;Zhang, Lijiao;Zhang, Dazhou;Li, Fusheng
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1771-1776
    • /
    • 2020
  • Adverse effects in the measured gamma spectrum caused by radioactive statistical fluctuations, gamma ray scattering, and electronic noise can be reduced by energy spectrum denoising. Wavelet threshold denoising can be used to perform multi-scale and multi-resolution analysis on noisy signals with small root mean square errors and high signal-to-noise ratios. However, in traditional wavelet threshold denoising methods, there are signal oscillations in hard threshold denoising and constant deviations in soft threshold denoising. An improved wavelet threshold calculation method and threshold processing function are proposed in this paper. The improved threshold calculation method takes into account the influence of the number of wavelet decomposition layers and reduces the deviation caused by the inaccuracy of the threshold. The improved threshold processing function can be continuously guided, which solves the discontinuity of the traditional hard threshold function, avoids the constant deviation caused by the traditional soft threshold method. The examples show that the proposed method can accurately denoise and preserves the characteristic signals well in the gamma energy spectrum.

Image Global K-SVD Variational Denoising Method Based on Wavelet Transform

  • Chang Wang;Wen Zhang
    • Journal of Information Processing Systems
    • /
    • 제19권3호
    • /
    • pp.275-288
    • /
    • 2023
  • Many image edge details are easily lost in the image denoising process, and the smooth image regions are prone to produce jagged. In this paper, we propose a wavelet-based image global k- singular value decomposition variational method to remove image noise. A layer of wavelet decomposition is applied to the noisy image first. Then, the image global k-singular value decomposition (IGK-SVD) method is used to remove the random noise of low-frequency components. Furthermore, a constructed variational denoising method (VDM) removes the random noise in the high-frequency component. Finally, the denoised image is obtained by wavelet reconstruction. The experimental results show that the proposed method's peak signal-to-noise ratio (PSNR) value is higher than other methods, and its structural similarity (SSIM) value is closer to one, indicating that the proposed method can effectively suppress image noise while retaining more image edge details. The denoised image has better denoising effects.

AWGN 환경에서 웨이브렛을 이용한 잡음 제거 방법에 관한 연구 (A Study on Denoising Methods using Wavelet in AWGN environment)

  • 배상범;김남호
    • 한국정보통신학회논문지
    • /
    • 제5권5호
    • /
    • pp.853-860
    • /
    • 2001
  • 본 논문에서는 웨이브렛을 이용한 두 가지 새로운 잡음 제거 방법으로, 공간적 상관관계를 이용한 NSSNF(new spatially selective noise filtration)과 threshold에 기초한 UDWT(undecimated discrete wavelet transform)을 제시한다. NSSNF에서는 기존의 SSNF에 새로운 파라메타를 추가하여, 융통성 있는 SNR 이득 특성을 얻도록 하였으며, UDWT에서는 hard-threshold를 적용하여, 기존의 soft-threshold를 적용한 OWT(orthogonal wavelet transform)보다 우수한 잡음 제거 효과를 얻도록 하였다. 이러한 테스트 환경으로는 AWGN을 선택하였으며, 개선 효과의 판단 기준으로 SNR을 사용하여, 기존의 잡음 제거 방법과 비교 분석하였다.

  • PDF

Wavelet-based Image Denoising with Optimal Filter

  • Lee, Yong-Hwan;Rhee, Sang-Burm
    • Journal of Information Processing Systems
    • /
    • 제1권1호
    • /
    • pp.32-35
    • /
    • 2005
  • Image denoising is basic work for image processing, analysis and computer vision. This paper proposes a novel algorithm based on wavelet threshold for image denoising, which is combined with the linear CLS (Constrained Least Squares) filtering and thresholding methods in the transform domain. We demonstrated through simulations with images contaminated by white Gaussian noise that our scheme exhibits better performance in both PSNR (Peak Signal-to-Noise Ratio) and visual effect.

임펄스 노이즈 환경에서 웨이브렛을 이용한 노이즈 제거 방법에 관한 연구 (A Study on Denoising Method using Wavelet in Impulse Noise Environment)

  • 배상범;김남호
    • 한국정보통신학회논문지
    • /
    • 제6권4호
    • /
    • pp.513-518
    • /
    • 2002
  • 본 논문에서는 웨이브렛을 이용한 임펄스 노이즈 제거 방범을 제시하며, 노이즈 제거에서 웨이브렛의 시간과 주파수 국부성은 신호의 상세 정보를 포함하고 있으므로, 기존의 방법들에 비해 우수한 결과를 제공한다. 임계치에 의한 노이즈 제거와 웨이브렛에 의한 신호의 slope를 이용하여, 노이즈 제거 효과를 최대로 함과 동시에 원신호의 edge를 인식하도록 하였다. 객관적인 판단을 위해, 테스트 신호고서 HeaviSine과 DTMF를 사용하였으며, 서로 다른 크기를 갖는 임펄스 노이즈를 동일한 시간에 원신호에 중첩하여 시뮬레이션 하였다.