• Title/Summary/Keyword: Waveguide Directional Coupler

Search Result 69, Processing Time 0.026 seconds

The characteristic of excitation coefficients for an effectively optical coupling (효율적인 광결합을 위한 전이계수 특성)

  • Choi, Chul-Hyun;Lee, Seung-Gol;Lee, El-Hang;Park, Se-Geun;O, Beom-Hoan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.97-100
    • /
    • 2002
  • We analyzed the excitation coefficients and the extinction ratio as a function of waveguide width, center to center distance, and angle of input waveguide for a directional coupler. The variation of thc difference between excitation coefficients is similar to that of the extinction ratio. Also, the smaller the difference between those is, the better the extinction ratio is. This concept will have application to devices using optical coupling.

  • PDF

A Study on a Compact Coupler between an Optical Fiber and a Grating-assisted Graphene-embedded Silicon Waveguide for a Wavelength-selective Photodetector

  • Heo, Hyungjun;Kim, Sangin
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.514-524
    • /
    • 2017
  • We proposed an integrated wavelength-selective photodetector based on a grating-assisted contradirectional coupler and a graphene absorption layer for a coarse wavelength division multiplexing (CWDM) communication system. The center wavelength of the absorption spectrum of the proposed device can be tuned simply by changing the period of the grating, and the proposed device structure is suitable to forming a cascaded structure. Therefore, an array of the proposed device of different grating periods can be used for simultaneous wavelength demultiplexing and signal detection in a CWDM communication system. Our theoretical study showed that the designed device with a grating length of $500{\mu}m$ could have an absorption of 95.1%, an insertion loss of 0.2 dB, and a 3 dB bandwidth of 7.5 nm, resulting in a -14 dB crosstalk to adjacent CWDM channels. We believe that the proposed device array can provide a compact and economic solution to receiver implementation in the CWDM system by combining functions of wavelength demultiplexing and signal detection.

Narrowband four-channel wavelength demultiplexer using integrated distributed coupling vertical couplers (분포결합 수직광결합기 집적을 이용한 협대역 4채널 파장역다중기)

  • 한상국
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.9
    • /
    • pp.93-99
    • /
    • 1998
  • A novel four-channel narrowband wavelength demultiplexer using integrated four vertical directional coupler structures is proposed and theoretically investigated. Four ridge waveguide with different ridge width are vertically coupled to a strip-loaded waveguide which results four different wavelengths filtered out to each ridge waveguide. In order to reduce the side-lobes, the coupling coefficients are varied along the propagation direction. The spectral responses of channels were found to be quite uniform. An average channel spacing of 7 nm with power coupling efficiency of ~90%, 3-dB passband width of 2 nm, and 20 dB side-lobe suppression ratio was achieved.

  • PDF

Design of a KaBand Half-Height Waveguide Power Combiner (Ka-Band용 Half-Height Waveguide 전력 합성기 설계)

  • 빅필준;최재훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1218-1224
    • /
    • 2000
  • A half-height waveguide power combiner is designed and analyzed for Ka-band satellite application. The branch line directional coupler is utilized as a power combiner to achieve high port-to-port isolation and low insertion loss. The half height waveguide is adopted to reduce the volume and mass of a power combiner. In this paper a half height waveguide power combiner is designed and analyzed by FDTD and its performance is compared with that of a full-height waveguide power combiner. The designed half-height combiner having optimum order is manufactured and tested. The measurement shows that the designed half-height power combiner satisfies all the performance requirements (insertion loss less than 0.3 dB, reflection loss more than 20dB, port to port isolation more than 20 dB, and port to port phase difference within 5$^{\circ}$) in the satellite communication frequency band of 20.255 GHz to 21.255 GHz.

  • PDF

Design and Fabrication of a Wideband Single-Balanced-Mixer using Planar Balun (평판형 발룬을 이용한 단일 평형 광대역 주파수 혼합기의 설계 및 제작)

  • 김성민;정재호;최현철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.1
    • /
    • pp.90-98
    • /
    • 1999
  • This paper presents a wideband single-balanced mixer using a diode which can be used in RF receiver of microwave measurement systems. For wideband characteristic, local oscillator(LO) signal is provided to diode with low loss using a coplanar waveguide-to-slotline balun. For high isolation characteristic radio frequency (RF) port and intermediate frequency (IF) port are designed using directional coupler. This mixer presents 30.5~31.17dB conversion loss whose flatness is within 1dB for 9 kHz~2.6 GHz wideband RF signal, and above 30 dB isolation for LO signal.

  • PDF

A W-Band Millimeter-Wave Power Standard Transfer System Using the Direct Comparison Method (직접 비교법을 이용한 W-Band 밀리미터파 전력 표준 전달 시스템)

  • Kwon, Jae-Yong;Kang, Tae-Weon;Kang, Jin-Seob;Lee, Dong-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.47-54
    • /
    • 2013
  • This paper introduces a W-band millimeter-wave power standard transfer system using the direct comparison method. The transfer system was developed to evaluate the effective efficiency and calibration factor of a W-band waveguide power sensor. The evaluation method and the measured results of the directional coupler that characterizes the calibration system are studied. The uncertainties of the standard transfer system are investigated, and the major uncertainty contributors are discussed as well. The performance of the realized W-band power standard transfer system was verified by comparing results with reference values.

Improved design of a directional coupler by a novel concept (방향성 결합기의 성능 및 허용오차 개선을 위한 신제안)

  • 최철현;박순룡;오범환
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.6
    • /
    • pp.405-410
    • /
    • 2000
  • We propose a novel design concept to improve extinction ratio by minimizing $Cv_e-Cv_o$ . Improvements of loss and fabrication error limit are also obtained by this hybrid design of the lateral shift and curved waveguide to control transfer coefficients, $Cv_e and Cv_o$ . The concept of lateral shift merges two transfer coefficients, and additional curved waveguide controls mode profile asymmetrically to help this minimizing effect of $Cv_e-Cv_o$ with no serious decrease in transfer efficiency. For a given InP based waveguide structure, the mode propagation analysis with an effective index approximation provided a calculational improvement of extinction ratio to -39 dB and fabrication error limit to $57.19\mu\textrm{m}$, with a structure design of $300\mu\textrm{m}$ waveguide curvature and $0.1\mu\textrm{m}$lateral shift. shift.

  • PDF

An optimal design of 4${\times}$4 optical matrix switch (4${\times}$4 매트릭스 광스위치의 최적 설계)

  • Choi, Won-Jun;Hong, Song-Cheol;Lee, Seok;Kim, Hwe-Jong;Lee, Jung-Il;Kang, Kwang-Nham;Cho, Kyu-Man
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.8
    • /
    • pp.153-165
    • /
    • 1995
  • The design procedure of a GaAs/AlGaAs semiconductor matrix optical switch is presented for a simplified tree architecture in the viewpoint of optical loss. A low loss, 0.537 dB/cm, pin type substrate is designed by considering the loss due to imputity doping at 1.3 $\mu$m wavelength. The operating voltage and the device length of a reversed ${\Delta}{\beta}$ electro-optic directional coupler(EODC) swith which is a cross-point device of the 4${\times}$4 matrix optical switch and the bending loss of rib waveguide are caculated as functions of waveguide parameters and bending parameters. There is an optimum bending radius for some waveguide parameters. It is recommened that higher optical confinement conditions such as wide waveguide width and higher rib-height should be chosen for structural parameters of a low loss and a process insensitive 4${\times}$4 matris optical switch. A 4${\times}$4 optical matrix switch which has a 3 dB loss and a 12 volt operating voltage is designed.

  • PDF

Modal Characteristics of Grating-Assisted Directional Coupler with 2D Periodic Patterns (2D 주기적 패턴으로 구성된 격자 구조형 방향성 결합기의 모드 특성)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.217-222
    • /
    • 2015
  • Longitudinal transmission-line modal theory is applied to analyze the guiding mode characteristics along 1D & 2D grating patterns of plasmonic grating-assisted directional couplers (P-GADC) based on silicon waveguide. By defining supermodes amenable to rigorous analytical solutions and interference between even and odd modes, the field distributions of TE modes for each grating patterns are evaluated. The numerical result reveals that the field distribution with maximum coupling efficiency occurs at P-GADC composed by square grating pattern. That is, it reveals at a minium gap condition of grating period $d_{min}=8.8{\mu}m$ different from conventional phase-matching condition of GADC.

Integrated-Optic Electric-Field Sensor Utilizing a Ti:LiNbO3 Y-fed Balanced-Bridge Mach-Zehnder Interferometric Modulator With a Segmented Dipole Antenna

  • Jung, Hongsik
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.739-745
    • /
    • 2014
  • We have demonstrated a $Ti:LiNbO_3$ electro-optic electric-field sensor utilizing a $1{\times}2$ Y-fed balanced-bridge Mach-Zehnder interferometric (YBB-MZI) modulator, which uses a 3-dB directional coupler at the output and has two complementary output waveguides. A dc switching voltage of ~25 V and an extinction ratio of ~12.5 dB are observed at a wavelength of $1.3{\mu}m$. For a 20 dBm rf input power, the minimum detectable electric fields are ~8.21, 7.24, and ~13.3 V/m, corresponding to dynamic ranges of ~10, ~12, and ~7 dB at frequencies of 10, 30, and 50 MHz respectively. The sensors exhibit almost linear response for an applied electric-field intensity from 0.29 V/m to 29.8 V/m.