Browse > Article
http://dx.doi.org/10.3807/JOSK.2014.18.6.739

Integrated-Optic Electric-Field Sensor Utilizing a Ti:LiNbO3 Y-fed Balanced-Bridge Mach-Zehnder Interferometric Modulator With a Segmented Dipole Antenna  

Jung, Hongsik (Department of Electronic and Electrical Engineering, Hongik University)
Publication Information
Journal of the Optical Society of Korea / v.18, no.6, 2014 , pp. 739-745 More about this Journal
Abstract
We have demonstrated a $Ti:LiNbO_3$ electro-optic electric-field sensor utilizing a $1{\times}2$ Y-fed balanced-bridge Mach-Zehnder interferometric (YBB-MZI) modulator, which uses a 3-dB directional coupler at the output and has two complementary output waveguides. A dc switching voltage of ~25 V and an extinction ratio of ~12.5 dB are observed at a wavelength of $1.3{\mu}m$. For a 20 dBm rf input power, the minimum detectable electric fields are ~8.21, 7.24, and ~13.3 V/m, corresponding to dynamic ranges of ~10, ~12, and ~7 dB at frequencies of 10, 30, and 50 MHz respectively. The sensors exhibit almost linear response for an applied electric-field intensity from 0.29 V/m to 29.8 V/m.
Keywords
Electro-optical electric-field sensor; $Ti:LiNbO_3$ optical channel waveguide; Lithium niobate; Y-fed balanced-bridge Mach-Zehnder interferometric optical modulator; Segmented dipole antenna;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. S. Jung, "Photonic electric-field sensor utilizing an asymmetric $Ti:LiNbO_3$ Mach-Zehnder interferometer with a dipole antenna," Fiber and Integrated Optics 31, 343-354 (2012).   DOI
2 T. H. Lee, F. T. Hwang, W. T. Shay, and C. T. Lee, "Electromagnetic field sensor using Mach-Zehnder waveguide modulator," Microwave and Optical Technol. Lett. 48-9, 1897-1899 (2006).   DOI   ScienceOn
3 D. H. Naghski, J. T. Boyd, H. E. Jackson, S. Sriram, S. A. Kingsley, and J. Latess, "An integrated photonic Mach- Zehnder interferometer with no electrodes for sensing electric fields," J. Lightwave Technol. 12, 1092-1098 (1994).   DOI   ScienceOn
4 D. An, Z. Shi, L. Sun, J. M. Taboada, Q. Zhou, and X. Lu, "Polymeric electro-optic modulator based on $1{\times}2$ Y-fed directional coupler," Appl. Phys. Lett. 76, 98-104 (2005).
5 H. Jung, "Electro-optic electric-field sensors utilizing $Ti:LiNbO_3\;1{\times}2$ directional coupler with dipole antennas," Opt. Eng. 52, 064402 (2013).   DOI
6 M. M. Howerton, C. H. Bulmer, and W. K. Burns, "Linear $1{\times}2$ directional coupler for electromagnetic field detection," Appl. Phys. Lett. 52, 1850-1852 (1988).   DOI
7 H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill Book Company, New York, 1985), Chapter 5.
8 R. Zeng, B. Wang, Z. Yu, B. Niu, and Y. Hua, "Integrated optical E-field sensor based on balanced Mach-Zehnder interferometer," Opt. Eng. 50, 114404 (2011).   DOI
9 R.-C. Twu, "Zn-diffused $1{\times}2$ balanced-bridge optical switch in a Y-cut lithium niobate," IEEE Photon. Technol. Lett. 19, 1269-1271 (2007).   DOI   ScienceOn
10 M. Schwerdt, J. Berger, B. Schuppert, and K. Petermann, "Integrated optical E-field sensors with a balanced detection scheme," IEEE Trans. Electromagn. Compat. 39, 386-390 (1997).   DOI   ScienceOn
11 Optiwave, OptiBPM 9.0: Waveguide Optics Design Software.
12 R. Zeng, B. Wang, B. Niu, and Z. Yu, "Development and application of integrated optical sensors for intense E-field measurement," Sensors 12, 11406-11434 (2012).   DOI   ScienceOn
13 N. Kuwabara, K. Tajima, R. Kobayashi, and F. Amemiya, "Development and analysis of electric field sensor using $LiNbO_3$ optical modulator," IEEE Trans. Electromagn. Compat. 34, 391-396 (1992).   DOI   ScienceOn