• Title/Summary/Keyword: Wavefront

Search Result 265, Processing Time 0.025 seconds

A study on the Quantification of vibration mode by ESPI using A.O Modulator (ESPI에서 AO변조기를 사용한 진동모드 정량화에 관한 연구)

  • 박낙규;유원재;안중근;강영준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.207-210
    • /
    • 2001
  • Recently, the study on the vibration analysis of machinery is greatly important and ESPI is widely used because of its many attractive features. Firstly, ESPI can be used to measure the vibration mode shape and the phase in real-time. Secondly, the conventional measuring methode, such as accelerometers, take much time to measure the whole field of object, but ESPI needs shorter time than other methods. Because ESPI is a field-inspection method. Thirdly, ESPI is a non-contact measuring system. ESPI does not have influence on the specimen. Beyond these features, there are several advantages in ESPI system. In this paper, the Stroboscopic ESPI system is described for measurement of a vibration mode shape. The Stroboscopic ESPI system had been used to visualize the vibration mode shape, in which EO(Electro-Optic)modulator was used to chop CW(Continuous Wavefront)laser. But it was not easy to control EO modulator and quantified the vibration amplitude and the phase of circular metal plate. At first, we found resonant frequency of the specimen by using time-averaged ESPI method. Nextly, the amplitudes of specimen were quantified by using Stroboscopic ESPI and we compare the results which were obtained in several chopping ratio.

  • PDF

Systematic error calibration of 2-axis lateral shearing interferometer (2축 층밀리기 간섭계의 계통오차 보정)

  • 김승우;이혁교
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.2
    • /
    • pp.98-104
    • /
    • 2002
  • We present a new self-calibration method to remove the systematic error of a 2-axis lateral shearing interferometer that has been specially designed for optical testing of aspheric optics. The method takes multiple measurements by rotating the test optics and extracts the systematic error by fitting the measured wavefronts into the Zernike polynomials. The method works with arbitrary azimuthal angles for test optics rotation, which offers an advantage of correcting the error induced by the non-orthogonality of the two axes of wavefront shearing as well as the error caused by the optical components of the interferometer system itself.

Characteristics of High-Speed Railway Tunnel Entry Compression Wave (고속철도 터널입구에서 형성되는 압축파의 특성에 관한 연구)

  • Kim, Heuy-Dong;Kim, Tae-Ho;Lee, Jong-Su;Kim, Dong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.234-242
    • /
    • 1999
  • Flow phenomena such as the pressure transients Inside a high-speed railway tunnel and the Impulsive waves at the exit of the tunnel are closely associated with the characteristics of the entry compression wave, which is generated by a train entering the tunnel. Tunnel entrance hood may be an effective means for alleviating the Impulsive waves and pressure transients. The objective of the current work is to explore the effects of the train nose shape and the entrance hood on the characteristics of the entry compression wave. Numerical calculations using the method of characteristics were applied to one-dimensional, unsteady, compressible flow field with respect to high-speed railway/tunnel systems. Two types of the entrance hoods and various train nose shapes were employed to reveal their influences on the entry compression wave for a wide range of train speeds. The results showed that the entry compression wave length increases as the train nose becomes longer and the train speed becomes lower. The entry compression wave length in the tunnel with hood becomes longer than that of no hood. Maximum pressure gradient in the compression wavefront reduces by the entrance hood. The results of the current work provide useful data for the design of tunnel entrance hood.

Case Study on the Seismic Refraction Survey in a Subsidence Area (지반침하지역에서의 탄성파 굴절법 탐사 적용사례)

  • Yun, Sang-Ho;Ji, Jun;Lee, Doo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.577-584
    • /
    • 2000
  • Seismic refraction survey was peformed for 10 lines along NE-SW and NW-SE directions above Nampoong gallery at Makyo-ri, Dogye, Samcheok, Kangwon-do. 48 geophones were laid in line with the interval of 1m, and a 5Kg hammer was used as a source at 5 points for each line. Data processing was done using reciprocal time method, GRM, and traveltime tomography which utilizes wavefront expansion method for forward process and SIRT for inversion. The result shows that the first layer has its lower boundary between 3.49m and 8.88m. The P-wave velocity of the first and the second layer were estimated as 270 360m/s and 1550 1940m/s respectively. When the boundary of the first and second layer is smooth enough and the velocity difference is large enough, GRM has little advantage over reciprocal time method. The result of reciprocal method and traveltime tomography shows consistency. The northeast part of the boundary has syncline structure, which is similar to the topography above. This implies that the collapse of the cavities of Nampoong gallery result in the subsidence of the ground surface. The subsidence is in progress across the Youngdong railroad, therefore a proper reinforcement work is required.

  • PDF

Optical Encryption System Using Two Linear Polarizer and Phase Mask (두 선형 편광기와 위상 마스크를 사용한 광 암호화 시스템)

  • 배효욱;신창목;서동환;박세준;조웅호;김수중
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.3
    • /
    • pp.10-18
    • /
    • 2003
  • In this paper, we propose an optical encryption system based on the encryption of information using the phase component of a wavefront and orthogonal polarization in a Mach-Zehnder interferometer. Since the incoherence of the two perpendicularly polarized lights removes interference component, the decrypted image is stable. In encryption process, the original image is converted into an image having random polarization state by the relative phase difference of horizontal polarization and vertical polarization, so we cannot obtain the original information from the random polarization distribution. To decrypt an Image, the random polarization distribution of encrypted image is divided into two orthogonal components, then key image must be placed on vertical path of Mach-Zehnder interferometer. The decrypted image is obtained In the form of intensity by use of an analyzer.

Optical alignment of a high-resolution optical earth observation camera for small satellites (소형 위성용 고해상도 광학카메라의 광학정렬)

  • Kim, Eugene D.;Park, Young-Wan;Kang, Myung-Seok;Kim, Ee-Eul;Yang, Ho-Soon
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.391-396
    • /
    • 2004
  • Spaceborne earth observation or astronomical payloads often use Cassegrain-type telescopes due to the limits in mass and volume. Precision optical alignment of such a telescope is vital to the success of the mission. This paper describes the simulated optical alignment methods using interferograms, wavefront error, and reverse-optimization method for different levels of alignment accuracy. It concludes with the alignment experiment results of a Cassegrain type spaceborne camera with 300mm entrance pupil diameter.

Diffraction grating interferometer for null testing of aspheric surface with binary amplitude CGH (이진 컴퓨터 형성 홀로그램을 이용한 비구면 형상 측정용 위상편이 회절격자 간섭계)

  • 황태준;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.313-320
    • /
    • 2004
  • We present a null testing method fer aspheric surfaces, utilizing a phase-shifting diffraction grating interferometer along with a binary amplitude computer generated hologram (CGH). The binary amplitude CGH is designed to compensate for the wavefront between a point source and the aspheric surface under test. The fringe visibility of the grating interferometer is controlled easily by selecting suitable grating diffraction orders for the measurement and reference wavefronts or by optimizing the groove shape of the grating used. The binary amplitude CGH is designed by numerical analysis of ray tracing and fabricated using e-beam lithography for autostigmatic testing. Experimental results of a large-scale aspheric mirror surface are discussed to verify the measurement performance of the proposed diffraction grating interferometer.

Volumetric Interferometry Using Spherical Wave Interference for Three-dimensional Coordinate Metrology

  • Rhee, Hyug-Gyo;Chu, Ji-Young;Kim, Seung-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.140-145
    • /
    • 2001
  • We present a new method of volumetric interferometer, which is intended to measure the three-dimensional coordinates of a moving object in a simultaneous way with a single optical setup. The method is based on the principles of phase-measuring interferometry with phase shifting. Two diffraction point sources, which are made of the polished ends of single-mode optical fibers are embedded on the object. Two spherical wavefronts emanate from the diffraction point sources and interfere with each other within the measurement volume. One wavefront is phase-shifted by elongating the corresponding fiber using a PZT extender. A CCD array sensor fixed at the stationary measurement station detects the resulting interference field. The measured phases are then related to the three-dimensional location of the object with a set of non-liner equations of Euclidean distance, from which the complete set of three-dimensional spatial coordinates of the object is determined through rigorous numerical computation based upon the least square error minimization.

Phase Only Pupil Filter Design Using Zernike Polynomials

  • Liu, Jiang;Miao, Erlong;Sui, Yongxin;Yang, Huaijiang
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.101-106
    • /
    • 2016
  • A pupil filter is a useful technique for modifying the light intensity distribution near the focus of an optical system to realize depth of field (DOF) extension and superresolution. In this paper, we proposed a new design of the phase only pupil filter by using Zernike polynomials. The effect of design parameters of the new filters on DOF extension and superresolution are discussed, such as defocus Strehl ratio (S.R.), superresolution factor (G) and relative first side lobe intensity (M). In comparison with the other two types of pupil filters, the proposed filter presents its advantages on controlling both the axial and radial light intensity distribution. Finally, defocused imaging simulations are carried out to further demonstrate the effectiveness and superiority of the proposed pupil filter on DOF extension and superresolution in an optical imaging system.

Selection of Optical Glasses Using a Chromatic-Aberration Correction Method for the Whole Visible Range Plus a Telecentric Lens Design Applying the Method (가시광선 전대역의 색수차보정을 위한 광학유리의 선정과 이를 적용한 텔레센트릭 렌즈의 설계)

  • Yu, Seung Moon;Jung, Mee Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.4
    • /
    • pp.217-225
    • /
    • 2015
  • This paper shows the best selection and combination of glass in lens design, to correct a chromatic aberration using achromatic and apochromatic conditions. Using this research result, we have designed a telecentric lens for machine vision in the full range of visible light. We obtain good optical quality in the form of a quite small RMS wavefront error of $0.057{\lambda}$ in the super-broadband wavelength range 380 nm -780 nm. This result is better than that for a common telecentric lens in the visible wavelength range 486.1-656.2 nm.