• Title/Summary/Keyword: Waveform control

Search Result 564, Processing Time 0.022 seconds

Effect Analysis of MW Transmission System for Strategic Unit Using Adaptive Modulation (적응변조 적용 전략제대 MW전송시스템 효과 분석)

  • Lim, Young-Gab;Youn, Jong-Taek;Choi, Young-Min;Kim, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.412-419
    • /
    • 2020
  • The strategic unit communication infrastructure for military command, communications requires a dualized network structure of various communication methods, considering the direction of development, strategic unit and line characteristic. It has been pointed out that MicroWave, which is typical of wireless systems, is inefficient because it operates only with existing technologies. Therefore, it is necessary to analyze the structure, efficiency of the MW transmission system and its effects. It is difficult to transfer efficiently considering wireless environment due to a fixed type of access structure in the existing MW transmission system. Adaptive modulation allows improvement, but with traditional access structures and fixed bandwidth, there is a limit. Following the transmission performance improvement technique considering availability and link distance in the previous study, this paper presented improved packetized MW transmission system structure and variable bandwidth transmission in consideration of adaptive modulation based variable transmission waveform, bandwidth and distance, and performed the analysis in view of the strategic unit and command control circuit.

Smart Radar System for Life Pattern Recognition (생활패턴 인지가 가능한 스마트 레이더 시스템)

  • Sang-Joong Jung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.91-96
    • /
    • 2022
  • At the current camera-based technology level, sensor-based basic life pattern recognition technology has to suffer inconvenience to obtain accurate data, and commercial band products are difficult to collect accurate data, and cannot take into account the motive, cause, and psychological effect of behavior. the current situation. In this paper, radar technology for life pattern recognition is a technology that measures the distance, speed, and angle with an object by transmitting a waveform designed to detect nearby people or objects in daily life and processing the reflected received signal. It was designed to supplement issues such as privacy protection in the existing image-based service by applying it. For the implementation of the proposed system, based on TI IWR1642 chip, RF chipset control for 60GHz band millimeter wave FMCW transmission/reception, module development for distance/speed/angle detection, and technology including signal processing software were implemented. It is expected that analysis of individual life patterns will be possible by calculating self-management and behavior sequences by extracting personalized life patterns through quantitative analysis of life patterns as meta-analysis of living information in security and safe guards application.

Sensorless Operation of Low-cost Inverters through Square-wave High Frequency Voltage Injection (사각 고주파 주입을 통한 저가형 인버터의 센서리스 운전)

  • Hwang, Sang-Jin;Lee, Dong-Myung
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.95-103
    • /
    • 2022
  • In this paper, the efficiency of a sensorless method with square-wave injection for a low-cost inverter, so called B4 inverter is presented. This inverter comprises only 4 switches to reduce system cost. It is distinguished from the conventional B6 inverter that has 6 of switching elements. The B4 inverter, injected a 1 kHz of harmonic wave, has been modelled using the functions and library in Matlab/Simulink. This paper described each component of sensorless algorithm. Among them, the Notch Filter is used to extract the harmonic component of the phase current and a second-order low-pass filter was used to reduce the ripple of the estimated speed. It is shown through simulation that the rotor angle of a permanent magnet synchronous motor is detected by multiplying the current waveform extracted using the notch filter by the harmonic voltage. The feasibility of the proposed method is shown through Simulink simulation.

Measurement System of Dynamic Liquid Motion using a Laser Doppler Vibrometer and Galvanometer Scanner (액체거동의 비접촉 다점측정을 위한 레이저진동계와 갈바노미터스캐너 계측시스템)

  • Kim, Junhee;Shin, Yoon-Soo;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.227-234
    • /
    • 2018
  • Researches regarding measurement and control of the dynamic behavior of liquid such as sloshing have been actively on undertaken in various engineering fields. Liquid vibration is being measured in the study of tuned liquid dampers(TLDs), which attenuates wind motion of buildings even in building structures. To overcome the limitations of existing wave height measurement sensors, a method of measuring liquid vibration in a TLD using a laser Doppler vibrometer(LDV) and galvanometer scanner is proposed in this paper: the principle of measuring speed and displacement is discussed; a system of multi-point measurement with a single point of LDV according to the operating principles of the galvanometer scanner is established. 4-point liquid vibration on the TLD is measured, and the time domain data of each point is compared with the conventional video sensing data. It was confirmed that the waveform is transformed into the traveling wave and the standing wave. In addition, the data with measurement delay are cross-correlated to perform singular value decomposition. The natural frequencies and mode shapes are compared using theoretical and video sensing results.

Effect of ATP on Calcium Channel Modulation in Rat Adrenal Chromaffin Cells (흰쥐 부신 크로마핀 세포 칼슘통로 조절에 미치는 ATP의 효과)

  • Kim, Kyung Ah;Goo, Yong Sook
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.157-166
    • /
    • 2014
  • ATP in quantity co-stored with neurotransmitters in the secretory vesicles of neurons, by being co-released with the neurotransmitters, takes an important role to modulate the stimulus-secretion response of neurotransmitters. Here, in this study, the modulatory effect of ATP was studied in $Ca^{2+}$ channels of cultured rat adrenal chromaffin cells to investigate the physiological role of ATP in neurons. The $Ca^{2+}$ channel current was recorded in a whole-cell patch clamp configuration, which was modulated by ATP. In 10 mM $Ba^{2+}$ bath solution, ATP treatment (0.1 mM) decreased the $Ba^{2+}$ current by an average of $36{\pm}6%$ (n=8), showing a dose-dependency within the range of $10^{-4}{\sim}10^{-1}mM$. The current was recovered by ATP washout, demonstrating its reversible pattern. This current blockade effect of ATP was disinhibited by a large prepulse up to +80 mV, since the $Ba^{2+}$ current increment was larger when treated with ATP ($37{\pm}5%$, n=11) compared to the control ($25{\pm}3%$, n=12, without ATP). The $Ba^{2+}$ current was recorded with $GTP{\gamma}S$, the non-hydrolyzable GTP analogue, to determine if the blocking effect of ATP was mediated by G-protein. The $Ba^{2+}$ current decreased down to 45% of control with $GTP{\gamma}S$. With a large prepulse (+80 mV), the current increment was $34{\pm}4%$ (n=19), which $25{\pm}3%$ (n=12) under control condition (without $GTP{\gamma}S$). The $Ba^{2+}$ current waveform was well fitted to a single-exponential curve for the control, while a double-exponential curve best fitted the current signal with ATP or $GTP{\gamma}S$. In other words, a slow activation component appeared with ATP or $GTP{\gamma}S$, which suggested that both ATP and $GTP{\gamma}S$ caused slower activation of $Ca^{2+}$ channels via the same mechanism. The results suggest that ATP may block the $Ca^{2+}$ channels by G-protein and this $Ca^{2+}$ channel blocking effect of ATP is important in autocrine (or paracrine) inhibition of adrenaline secretion in chromaffin cell.

A New Endpoint Detection Method Based on Chaotic System Features for Digital Isolated Word Recognition System (음성인식을 위한 혼돈시스템 특성기반의 종단탐색 기법)

  • Zang, Xian;Chong, Kil-To
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.5
    • /
    • pp.8-14
    • /
    • 2009
  • In the research field of speech recognition, pinpointing the endpoints of speech utterance even with the presence of background noise is of great importance. These noise present during recording introduce disturbances which complicates matters since what we just want is to get the stationary parameters corresponding to each speech section. One major cause of error in automatic recognition of isolated words is the inaccurate detection of the beginning and end boundaries of the test and reference templates, thus the necessity to find an effective method in removing the unnecessary regions of a speech signal. The conventional methods for speech endpoint detection are based on two linear time-domain measurements: the short-time energy, and short-time zero-crossing rate. They perform well for clean speech but their precision is not guaranteed if there is noise present, since the high energy and zero-crossing rate of the noise is mistaken as a part of the speech uttered. This paper proposes a novel approach in finding an apparent threshold between noise and speech based on Lyapunov Exponents (LEs). This proposed method adopts the nonlinear features to analyze the chaos characteristics of the speech signal instead of depending on the unreliable factor-energy. The excellent performance of this approach compared with the conventional methods lies in the fact that it detects the endpoints as a nonlinearity of speech signal, which we believe is an important characteristic and has been neglected by the conventional methods. The proposed method extracts the features based only on the time-domain waveform of the speech signal illustrating its low complexity. Simulations done showed the effective performance of the Proposed method in a noisy environment with an average recognition rate of up 92.85% for unspecified person.

Design of a Spread Spectrum Clock Generator for DisplayPort (DisplayPort적용을 위한 대역 확산 클록 발생기 설계)

  • Lee, Hyun-Chul;Kim, Tae-Ho;Lee, Seung-Won;Kang, Jin-Ku
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.68-73
    • /
    • 2009
  • This paper describes design and implementation of a spread spectrum clock generator (SSCG) for the DisplayPort. The proposed architecture generates the spread spectrum clock using a sigma-delta fractional-N PLL. The SSCG uses a digital End order MASH 1-1 sigma-delta modulator and a 9bit Up/Dn counter. By using MASH 1-1 sigma-delta modulator, complexity of circuit and chip area can be reduced. The advantage of sigma-delta modulator is the better control over modulation frequency and spread ratio. The SSCG generates dual clock rates which are 270MHz and 162MHz with 0.25% down-spreading and triangular waveform frequency modulation of 33kHz. The peak power reduction is 11.1dBm at 270MHz. The circuit has been designed and fabricated using in 0.18$\mu$m CMOS technology. The chip occupies 0.620mm$\times$0.780mm. The measurement results show that the fabricated chip satisfies the DispalyPort standard.

A Study on the Implementation of the 2-Dimension Magnetic Fluxgate Sensor (2차원 Magnetic Fluxgate센서의 구현에 관한 연구)

  • Park, Yong-Woo;Kim, Nam-Ho;Ryu, Ji-Goo
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.67-76
    • /
    • 2002
  • We have presented a 2-dimensional fluxgate sensor with ferrite core, excitation, and pick-up coil. This fluxgate sensor system consists of a sensing element, driving circuits for excitation coil and signal processing for detecting second harmonic frequency component which is proportional to the DC magnetic to be measured. The sensor core is excited by a square waveform of voltage through the excitation coil of 80 turns. The second harmonic output of pick-up coil(x and y axis: 100 turns) is measured by FFT spectrum analyzer. This result is compared with output of PSD(phase sensitive detector) unit for detecting the second harmonic component. The measured maximum sensitivity is about 1580 V/T at driving frequency of 1.5 kHz and excitation current of 2 App. The nonlinearity of this system is measured about 2.3%(PSD) and about 1%(second harmonics of the pick-up). The angle error of the system is ${\pm}2$ %/FS.

Characteristics of Impulse Radios for Mu1tipath Channels (다중 경로 채널에서 임펄스 라디오의 특징)

  • 이호준;한병칠
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11B
    • /
    • pp.1501-1509
    • /
    • 2001
  • Recently, the use of wireless communication systems has been rapidly increasing, which results in a difficult problem in efficient control of limited frequency resources. As a way of solving this problem, the ultra wideband time hopping impulse radio system attracts much attention. The impulse radio system communicates pulse position modulated data using Gaussian monocycle pulses of very short duration less than 1 nsec. Thus the transmitted signal has very low power spectral density and ultra wide bandwidth from near D.C. to a few GHz. It is blown that it hardly interferes with the existing communication systems because of its very low power spectral density. The purpose of this paper is to characterize multipath propagation of the impulse radio signal and to evaluate the performance of the correlator-based receiver for the multipath environments. In this paper, we consider the deterministic two-path model and the statistical indoor multipath model of Saleh and Valenzuela. For the two-path model the output of the correlator with the ideal reference waveform varies according to the relative difference between the indirect path delay and the time interval of PPM, and to the indirect path gains. In addition, the characteristics of bit error rates is measured for the two models through computer simulation. The simulation results indicate that the performance of the impulse radio system depends both on the relative difference between the indirect path delay and the time interval of PPM, and on the indirect path gains. Furthermore, it is observed that the reference signal designed for the AWGN channel can not be applied to the multipath channels.

  • PDF

Development and Validation of the GPU-based 3D Dynamic Analysis Code for Simulating Rock Fracturing Subjected to Impact Loading (충격 하중 시 암석의 파괴거동해석을 위한 GPGPU 기반 3차원 동적해석기법의 개발과 검증 연구)

  • Min, Gyeong-Jo;Fukuda, Daisuke;Oh, Se-Wook;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.39 no.2
    • /
    • pp.1-14
    • /
    • 2021
  • Recently, with the development of high-performance processing devices such as GPGPU, a three-dimensional dynamic analysis technique that can replace expensive rock material impact tests has been actively developed in the defense and aerospace fields. Experimentally observing or measuring fracture processes occurring in rocks subjected to high impact loads, such as blasting and earth penetration of small-diameter missiles, are difficult due to the inhomogeneity and opacity of rock materials. In this study, a three-dimensional dynamic fracture process analysis technique (3D-DFPA) was developed to simulate the fracture behavior of rocks due to impact. In order to improve the operation speed, an algorithm capable of GPGPU operation was developed for explicit analysis and contact element search. To verify the proposed dynamic fracture process analysis technique, the dynamic fracture toughness tests of the Straight Notched Disk Bending (SNDB) limestone samples were simulated and the propagation of the reflection and transmission of the stress waves at the rock-impact bar interfaces and the fracture process of the rock samples were compared. The dynamic load tests for the SNDB sample applied a Pulse Shape controlled Split Hopkinson presure bar (PS-SHPB) that can control the waveform of the incident stress wave, the stress state, and the fracture process of the rock models were analyzed with experimental results.