• Title/Summary/Keyword: Wave packet

Search Result 78, Processing Time 0.025 seconds

Envelope-Function Equation and Motion of Wave Packet in a Semiconductor Superlattice Structure

  • Kim, Byoung-Whi;Jun, Young-Il;Jung, Hee-Bum
    • ETRI Journal
    • /
    • v.21 no.1
    • /
    • pp.1-27
    • /
    • 1999
  • We present a new description of envelope-function equation of the superlattice (SL). The SL wave function and corresponding effective-mass equation are formulated in terms of a linear combination of Bloch states of the constituent material with smaller band gap. In this envelope-function formalism, we review the fundamental concept on the motion of a wave packet in the SL structure subjected to steady and uniform electric fields F. The review confirms that the average of SL crystal momentums K = ($k_x,k_y,q$), where ($K_x,k_y$) are bulk inplane wave vectors and q SL wave vector, included in a wave packet satisfies the equation of motion = $_0+Ft/h$; and that the velocity and acceleration theorems provide the same type of group velocity and definition of the effective mass tensor, respectively, as in the Bulk. Finally, Schlosser and Marcus's method for the band theory of metals has been by Altarelli to include the interface-matching condition in the variational calculation for the SL structure in the multi-band envelope-function approximation. We re-examine this procedure more thoroughly and present variational equations in both general and reduced forms for SLs, which agrees in form with the proposed envelope-function formalism. As an illustration of the application of the present work and also for a brief investigation of effects of band-parameter difference on the subband energy structure, we calculate by the proposed variational method energies of non-strained $GaAs/Al_{0.32}Ga_{0.68}As$ and strained $In_{0.63}Ga_{0.37}As/In_{0.73}Ga_{0.27}As_{0.58}P_{0.42}SLs$ with well/barrier widths of $60{\AA}/500{\AA}$ and 30${\AA}/30{\AA}$, respectively.

  • PDF

Audio Coder Using an Adaptive Wavelet packet Decomposition and Psychoacoustic (적응 웨이블릿 패킷을 이용한 오디오 부호화기와 심리음향 모델링)

  • 김준성
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.245-248
    • /
    • 1998
  • In this paper, a new variable wavelet packet decomposition audio coder, based on the time varying characteristic of the audio signals, is proposed and presents a technique to incorporate psychoacoustic models into an adaptive wave let packet scheme. The proposed filterbank improves the defect of the polyphase filterbank that could not properly represent the critical band and the defect of QMF-tree filter that need high complexity to implement. The filterbank consists of varying number of subband from 4 to 26 bands and use Daubechies 6-order wave let. The codec yields excellent quality at total bit rates of about 128kbps for monophonic CD-quality signals with an sampling frequency of 44.1kHz and reduces complexity by 19% for various bit-rates and sources with encoding and decoding process.

  • PDF

ELECTRON TEMPERATURE ESTIMATION OF NON-THERMAL ATMOSPHERIC-PRESSURE NEON AND OXYGEN ADMIXTURE PLASMA JET BY CONVECTIVE WAVE PACKET MODEL

  • SORNSAKDANUPHAP, Jirapong;SUANPOOT, Pradoong;Hong, Young June;Ghimire, Bhagirath;CHO, Guangsup;CHOI, EunHa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.207-207
    • /
    • 2016
  • plasma group velocities of neon with oxygen admixture (ug) are obtained by intensified charge coupled device (ICCD) camera images at fixed gate width time of 5 ns. The propagation velocities outside interelectrode region are in the order of 104 m/s.The plasma ambipolar diffusion velocities are calculated to be in the order of 102 m/s. Plasma jet is generated by all fixed sinusoidal power supply, total gas flow and repetition frequency at 3 kV, 800 sccm and 40 kHz, respectively. The amount of oxygen admixture is varied from 0 to 2.75 %. By employing one dimensional convective wave packet model, the electron temperatures in non-thermal atmospheric-pressure plasma jet are estimated to be in a range from 1.65 to 1.95 eV.

  • PDF

ELECTRON TEMPERATURE ESTIMATION OF NON-THERMAL ATMOSPHERIC-PRESSURE NEON AND ARGON PLASMA JET BY CONVECTIVE WAVE PACKET MODEL

  • SORNSAKDANUPHAP, Jirapong;SUANPOOT, Pradoong;Hong, Young June;Ghimire, Bhagirath;CHO, Guangsup;CHOI, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.156.1-156.1
    • /
    • 2015
  • Neon and argon plasma group velocities (ug) are obtained by intensified charge coupled device (ICCD) camera images at fixed gate width time of 5 ns. The propagation velocities in upstream and downstream region are in the order of 104-105 m/s. The plasma ambipolar diffusion velocities are calculated to be in the order of 101-102 m/s. Plasma jet is generated by sinusoidal power supply in varying voltages from 1 to 4 kV at repetition frequency of 40 kHz. By employing one dimensional convective wave packet model, the neon and argon electron temperatures in non-thermal atmospheric-pressure plasma jet are estimated to be 1.95 and 1.18 eV, respectively.

  • PDF

Performance Analysis of Inter-Vehicle DS-CDMA/QPSK in Millimeter Wave-Band (밀리미터파 대역을 이용하는 차량간 DS-CDMD/QPSK 방식의 성능 분석)

  • 김춘구;강희조;최용석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.195-198
    • /
    • 2000
  • This paper have been analyzed performance of DS-CDMA/QPSK system in short range IVC, and evaluated packet uu rate(PER) in an On-Ray Rician channel model suitable for platoon driving of AVHS that 60GHz millimeter wave is very powerful to MP(multipath-wave). We analyzed probability characteristic of system as variation of Rician factor and user number in One-Ray Rician fading environment and evaluated packet error rate(PER) according to inter-vehicle distance when the BCH channel coding(255,247,1) and diversity schemes is adopted.

  • PDF

Improvement Performance of DS-CDMA/QPSK System with Convolution Coding and MRC Diversity in Millimeter Wave RF Channels (밀리미터파 무선통신로에서 컨볼루션 코딩과 MRC 다이버시티에 의한 DS-CDMA/QPSK 시스템 성능 개선)

  • 김춘구;강희조;최용석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.645-652
    • /
    • 2001
  • In this paper is adopted the One-Ray Rician channel model for AVHS's platoon to short-range IVC (Inter-Vehicle Communication System) and analyzed packet probability characteristics in 60㎓ millimeter wave with very powerful to MP(multipath-wave). Both Convolution coding and MRC diversity is adopted that Multimedia service is satisfied following user's desire increase in the next and analyzed packet probability characteristics of DS-CDMA/QPSK systems.

  • PDF

Design and Implementation of Secure Vehicle Communication Protocols for WAVE Communication Systems (WAVE 통신 시스템을 위한 차량 보안 통신 프로토콜의 설계 및 구현)

  • Park, Seung-Peom;Ahn, Jae-Won;Kim, Eun-Gi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.841-847
    • /
    • 2015
  • The WAVE(Wireless Access in Vehicular Environments) communication system supports wireless communication environments between vehicles. As the utilization of wireless communication has been increased, attack methods have been varied. There is a high risk on packet manipulations conducted by third party. In this paper, we have designed a secure communication protocol between CA and vehicles. Our designed protocol uses a ECIES(Elliptic Curve Integrated Encryption Scheme) for vehicle authentication and AES(Advanced Encryption Standard) algorithm for protecting packet integrity and confidentiality.

The Design and Implementation of the Mutual Message Processing between WME Module and MLME Module for Vehicle Communication Technology (차량 통신 기술을 위한 WME 모듈과 MLME 모듈 간의 상호 메시지 처리과정 설계 및 구현)

  • Jang, Chung Ryong;Lee, Dae Sik;Lee, Yong Kwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.63-71
    • /
    • 2013
  • WAVE(Wireless Access for Vehicular Environment) System is a communication technology to monitor system failure and vehicle functions and management services to prevent possible incidents of driving a vehicle. In this paper, we have designed and implemented the mutual message processing through parameter between WME management module that manages WAVE system and MLME that manages the upper layer MAC(Media Access Control) module. Also, in order to verify the validity, we have carried out experiments to compare the speed of data processing by dividing data of 1Mbyte, 2Mbyte, 3Mbyte into the packets of 2KByte and 4KByte. Experiments data processing speed of 2KByte packet were shown about 173.62ms in 1MByte, 2MByte about 352.61ms, 3MByte about 550.13ms and, data processing speed of 4KByte packet, 1MByte approximately 87.56ms, 2MByte about 177.94ms, 3MByte about 277.18ms. Therefore, in WAVE system, the mutual messages processing through the parameters between WME and MLME module can be utilized in the various service of ITS(Intelligent Transportation Systems) depending on the speed of data processing.

Packet Detection and Frequency Offset Estimation/Correction Architecture Design and Analysis for OFDM-based WPAN Systems (OFDM-기반 WPAN 시스템을 위한 패킷 검출 및 반송파 주파수 옵셋 추정/보정 구조 설계 및 분석)

  • Back, Seung-Ho;Lee, Han-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.7
    • /
    • pp.30-38
    • /
    • 2012
  • This paper presents packet detection, frequency offset estimation architecture and performance analysis for OFDM-based wireless personal area network (WPAN) systems. Packet detection structure is used to find the start point of a packet exactly in WPAN system as the correlation value passes the constant threshold value. The applied autocorrelation structure of the algorithm can be implemented simply compared to conventional packet detection algorithms. The proposed frequency offset estimation architecture is designed for phase rotation process structure, internal bit reduction to reduce hardware size and the frequency offset adjustment block to reduce look-up table size unlike the conventional structure. If the received signal can be compensated by estimated frequency offset through the correction block, it can reduce the impact on the frequency offset. Through the performance result, the proposed structure has lower hardware complexity and gate count compared to the conventional structure. Thus, the proposed structure for OFDM-based WPAN systems can be applied to the initial synchronization process and high-speed low-power WPAN chips.

Analysis of V2V Broadcast Performance Limit for WAVE Communication Systems Using Two-Ray Path Loss Model

  • Song, Yoo-Seung;Choi, Hyun-Kyun
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.213-221
    • /
    • 2017
  • The advent of wireless access in vehicular environments (WAVE) technology has improved the intelligence of transportation systems and enabled generic traffic problems to be solved automatically. Based on the IEEE 802.11p standard for vehicle-to-anything (V2X) communications, WAVE provides wireless links with latencies less than 100 ms to vehicles operating at speeds up to 200 km/h. To date, most research has been based on field test results. In contrast, this paper presents a numerical analysis of the V2X broadcast throughput limit using a path loss model. First, the maximum throughput and minimum delay limit were obtained from the MAC frame format of IEEE 802.11p. Second, the packet error probability was derived for additive white Gaussian noise and fading channel conditions. Finally, the maximum throughput limit of the system was derived from the packet error rate using a two-ray path loss model for a typical highway topology. The throughput was analyzed for each data rate, which allowed the performance at the different data rates to be compared. The analysis method can be easily applied to different topologies by substituting an appropriate target path loss model.