• Title/Summary/Keyword: Wave modeling

Search Result 801, Processing Time 0.025 seconds

Parallelizing 3D Frequency-domain Acoustic Wave Propagation Modeling using a Xeon Phi Coprocessor (제온 파이 보조 프로세서를 이용한 3차원 주파수 영역 음향파 파동 전파 모델링 병렬화)

  • Ryu, Donghyun;Jo, Sang Hoon;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.129-136
    • /
    • 2017
  • 3D seismic data processing methods such as full waveform inversion or reverse-time migration require 3D wave propagation modeling and heavy calculations. We compared efficiency and accuracy of a Xeon Phi coprocessor to those of a high-end server CPU using 3D frequency-domain wave propagation modeling. We adopted the OpenMP parallel programming to the time-domain finite difference algorithm by considering the characteristics of the Xeon Phi coprocessors. We applied the Fourier transform using a running-integration to obtain the frequency-domain wavefield. A numerical test on frequency-domain wavefield modeling was performed using the 3D SEG/EAGE salt velocity model. Consequently, we could obtain an accurate frequency-domain wavefield and attain a 1.44x speedup using the Xeon Phi coprocessor compared to the CPU.

Simulation of Dynamic in-situ Soil Properties for the Centrifuge Test (Hualien Site in Taiwan) (원심 모형 시험을 위한 동적 현장 지반 모사 기법 연구(대만 화련 지반))

  • Ha, Jeong-Gon;Lee, Sei-Hyun;Choo, Yun-Wook;Kim, Se-Hee;Kim, Dong-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.27-36
    • /
    • 2012
  • The simulation of the field dynamic soil properties for soil modeling in the centrifuge test is important. In this study, the process of soil modeling based on the shear wave velocity profile is developed. From the resonant column test in each confining pressure, the shear wave velocity profile is expected and the modeling condition is determined by comparing it with that in the field. During the dynamic centrifuge test, the bender element test is performed for measuring the in-flight shear wave velocity profile, and the applicability of the proposed method was verified. This modeling method is applied to the centrifuge test of the Hualien Large-Scale Seismic test.

Induction Parameter Modeling of Hydrocarbon Fuel/Oxidizer for Detonation Wave Analysis (데토네이션 파 해석을 위한 탄화수소 연료/산화제의 Induction Parameter Modeling)

  • Choi, Jeong-Yeol;Yang, Vigor
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.57-62
    • /
    • 2003
  • A general procedure of obtaining reliable one-step kinetics model for hydrocarbon mixture from the fully detailed chemistry is described iin this study. One-step theoretical formulation of the induction parameter model IPM uses a theoretical reconstruction of the induction time database obtained from a detailed kinetics library. Non-dimensional induction time calculations is compared with that of detailed kinetics. The IPM was latter implemented to fluid dynamics code and applied for the numerical simulation of detonation wave propagation. The numerical results including the numerical smoked-foil record show the all the details of the detonation wave propagation characteristics at the cost around 1/100 of the detailed kinetics calculation.

  • PDF

Joint inversion of Love Wave and Rayleigh Wave for Evaluating the Subsurface Stiffness Structure (지반 강성구조 평가를 위한 러브파와 레일리파의 동시역산해석)

  • Joh, Sung-Ho;Lee, Il-Wha
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.302-307
    • /
    • 2005
  • Love wave and Rayleigh wave are the major elastic waves belonging to the category of the surface wave. The fact that Love wave is not contaminated by P-wave which makes Love wave superior to Rayleigh wave and other body waves. Therefore, the information that Love wave carries is more distinct and clearer than the information of Rayleigh wave. Based on theoretical research, the joint inversion analysis which is used both Love wave dispersion information and Rayleigh wave dispersion information was proposed. Purpose of the joint inversion analysis is to improve accuracy and convergency of inversion results utilizing that frequency contribution of each wave is different. This analysis technique is consisted of the forward modeling using transfer matrix, the sensitivity matrix determined to the ground system and DLSS(Damped Least Square Solution) as a inversion technique. The application of this analysis was examined through the field test.

  • PDF

An Infinite Element for Simulating Wave Propagation in Two-Phase Medium (2상 매질에서 파동전달 모사를 위한 무한요소)

  • Kim, Jae-Min
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.34-41
    • /
    • 2005
  • This paper presents a new infinite element for modeling far-field of wave propagation problem in a fluid-saturated two-phase medium. The infinite element can simulate arbitrary number of multiple wave components, while wave components in infinite element developed by other researchers was limited to two compressional waves. The accuracy and effectiveness of the proposed method have demonstrated using 1-D and 2-D wave propagation problems.

  • PDF

DEVELOPMENT OF A NEW MODEL FOR NONLINEAR-DISPERSIVE WAVES OVER ARBITRARY DEPTHS

  • Nadaoka, Kazuo
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1998.09a
    • /
    • pp.5-11
    • /
    • 1998
  • Wave nonlinearity and dispersivity have mutually counteracting effects on the wave evolution process; i.e., the former makes the wave profile steeper, while the latter milder. Therefore to describe evolution of nonlinear water waves under general condition such as nonlinear random waves over arbitrary depths, both the wave nonlinearity and dispersivity must be properly taken into account in the wave modeling. (omitted)

  • PDF

Simulation of Wave Propagation by Cellular Automata Method (세포자동자법에 의한 파동전파의 시뮬레이션)

  • ;;森下信
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.610-614
    • /
    • 2000
  • Cellular Automata(CA)s are used as a simple mathematical model to investigate self-organization in statistical mechanics, which are originally introduced by von Neumann and S. Ulam at the end of the 1940s. CAs provide a framework for a large class of discrete models with homogeneous interactions, which are characterized by the following fundamental properties: 1) CAs are dynamical systems in which space and time are discrete. 2) The systems consist of a regular grid of cells. 3) Each cell is characterized by a state taken from a finite set of states and updated synchronously in discrete time steps according to a local, identical interaction rule. 4) The state of a cell is determined by the previous states of a surrounding neighborhood of cells. A cellular automaton has been attracted wide interest in modeling physical phenomena, which are described generally, partial differential equations such as diffusion and wave propagation. This paper describes one and two-dimensional analysis of wave propagation phenomena modeled by CA, where the local interaction rules were derived referring to the Lattice Gas Model reported by Chen et al., and also including finite difference scheme. Modeling processes by using CA are discussed and the simulation results of wave propagation with one wave source are compared with that by finite difference method.

  • PDF

Centrifuge Modeling and Numerical Analysis on Breakwater Construction (방파제 축조공사의 Centrifuge 모델링과 수치해석)

  • Yoo, Nam-Jae;Kim, Dong-Gun;Yoon, Dae-Hee
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.81-90
    • /
    • 2011
  • Centrifuge modeling and numerical analysis on works of breakwater construction were performed to investigate the behavior of caisson type of breakwater and foundation treated with the method of DCM (Deep Cement Mixing) under the condition of wave action in field. In centrifuge modeling, construction sequence of breakwater caisson such as preparation of ground, treatment of DCM, installation of rubble mound, placement of breakwater caisson and lateral loading on the breakwater due to wave action were reconstructed. Lateral movement of model breakwater and ground reaction in the vertical direction were monitored during test. Stress concentration ratio between the untreated ground and the treated ground with DCM was evaluated from measurement of vertical stresses on each ground. Numerical analysis with the software of PLAXIS was carried to compare with Results of centrifuge model test. It was found that stability of model breakwater was maintained during stage of construction and the compared results about stress concentration ratio were in relatively good agreements.

  • PDF

Application of Modeling of Electromagnetic Wave Propagation for Thickness Determination Using Finite Difference-Time Domain (유한차분 시간영역법을 이용한 콘크리트 두께측정 전자파 모델링의 적용)

  • 임홍철;남국광
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.341-349
    • /
    • 2002
  • The radar method is becoming one of the major nondestructive testing(NDT) techniques lot concrete structures. Numerical modeling of electromagnetic wane is needed to analyze radar measurement results. Finite difference-time domain(FD-TD) method can be used to simulate electromagnetic wave propagation through concrete specimens. Five concrete specimens with different thickness are modeled in 3-dimension. Radar modeling results compare measurement results to find backface of the concrete specimens and measure thickness of the concrete specimens.

2-D Modeling of Electromagnetic Waves for the Probing of Concrete (콘크리트 내부 탐사를 위한 전자기파의 2차원 모델링)

  • 조윤범;임홍철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.18-23
    • /
    • 2000
  • The radar method is becoming one of the major nondestructive testing (NDT) techniques for concrete structures. Numerical modeling of electromagnetic wave is needed to analyze radar measurement results and to study the influence of measurement parameters on the radar measurements. Finite difference-time domain (FD-TD) method is used to simulate electromagnetic wave propagation through concrete specimens. Three concrete specimens with a 19.1 mm rebar embedded at 40 mm, 60 mm, and 80 mm depth are modeled in 3-dimension. As results, 2-D image processing scheme of modeling data has been developed and applied to the imaging of steel bars inside concrete.

  • PDF