• Title/Summary/Keyword: Wave deformation model

Search Result 161, Processing Time 0.027 seconds

Wave propagation of graphene platelets reinforced metal foams circular plates

  • Lei-Lei Gan;Jia-Qin Xu;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.645-654
    • /
    • 2023
  • Based on first-order shear deformation theory, a wave propagation model of graphene platelets reinforced metal foams (GPLRMFs) circular plates is built in this paper. The expressions of phase-/group- velocities and wave number are obtained by using Laplace integral transformation and Hankel integral transformation. The effects of GPLs pattern, foams distribution, GPLs weight fraction and foam coefficient on the phase and group velocity of GPLRMFs circular plates are discussed in detail. It can be inferred that GPLs distribution have great impacts on the wave propagation problems, and Porosity-I type distribution has the largest phase velocity and group velocity, followed by Porosity-III, and finally Porosity-II; With the increase of the GPLs weight fraction, the phase- and group- velocities for the GPLRMFs circular plate will be increased; With the increase of the foam coefficient, the phase- and group- velocities for the GPLRMFs circular plate will be decreased.

Beach Deformation Mechanisms in Haeundae Beach (해운대(海雲臺) 해수욕장(海水浴場)의 해빈변형기구(海濱變形機構))

  • Lee, Jong Sup;Park, II Heum;Kim, Cha Kyum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.595-605
    • /
    • 1994
  • The field observations. data analyses and numerical experiments are performed to investigate the short and long term beach deformation mechanisms in Haeundae beach. The schematic diagrams of deposition and erosion mechanism due to the attack of typhoons are described from the analysis on the beach widths and profiles. The short term beach deformation depends strongly on the characteristics of incident waves and wave-induced currents. The main incident wave and the calibration parameters of the shoreline change model are determined using the beach width data. Beacause the main incident wave approaches obliquly from the SE direction, the net westward longshore sediment transport occurs. Therefore the unbalance of longshore sediment budget in the east of the beach where the sediment source dose not exist causes a beach erosion. On the other hand, the deposited sand in the west is lost offshore by the storm wave action.

  • PDF

Numerical Wave Deformation Model in Variable Grid System around the Coastal Structures (가변격자체계에 의한 연안구조물 주변의 파랑변형모형)

  • 이동수
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1992.08a
    • /
    • pp.77-82
    • /
    • 1992
  • 쇄파역이 포함된 연안해역에 구조물등이 설치될 경우, 심해에서 발달하여 진행해온 파랑은 구조물 주변에서 반사 및 회절에 기인하여 지배적으로 변형하여 주변해역의 파랑장이 변화하게 되며, 특히 쇄파대에 위치한 구조물 주변에서는 복잡한 파랑변형 양상을 나타내게 된다.(중략)

  • PDF

Parabolic Approximation Model for Wave Deformation Prediction in the Shallow Water (천해파랑 변형예측을 위한 포물형 근사 모델)

  • 이동수;김숭경
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1992.08a
    • /
    • pp.84-89
    • /
    • 1992
  • 파랑변형 예측모델로서는 타원형 편미분 방정식 형태인 완경사 방정식(Berkhoff, 1972)이 있으며 이는 파랑의 굴절, 회절, 반사등의 변형을 재현할 수 있으나 수치해석상 어려운점이 있으며 많은 기억용량과 계산시간이 소요되어 일반적이지 못한 단점이 있다.(중략)

  • PDF

The Change of Nearshore Processes due to the Development of Coastal Zone (연안역 개발에 따른 해안과정의 변화)

  • Lee, J.W.;Lee, S.J.;Lee, H.;Jeong, D.D.
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.155-166
    • /
    • 1999
  • The construction of the coastal structures and reclamation work causes the circulation reduced in the semi-closed inner water area and the unbalanced sediment budget of beach results in an alteration of beach topography. Among the various fluid motions in the nearshore zone water particle motion due to wave and wave-induced currents are the most responsible for sediment movement. Therefore it is needed to predict the effect of the environmental change because of development and so the prediction of wave transformation dose. The purpose of this study is to introduce the relation between waves wave-induced currents and sediment movement. In this study we will show numerical method using energy conservation equation involving reflection diffraction and reflection and the surfzone energy dissipation term due to wave breaking is included in the basic equation. For the wave-induced current the momentum equation was combined with radiation stresses lateral mixing and friction Various information is required in the prediction of wave-induced current depending on the prediction tool. We can predict changes in wave-induced current from the distribution of wave especially near the wave breaking zone. To evaluate these quantities we have to know the local condition of waves mean sea level and so on. The results from the wave field and wave-induced current field deformation models are used as input data of the sediment transport and bottom change model. Numerical model were established by a finite difference method then were applied to the development plan of the eastern Pusan coastal zone Yeonhwa-ri and Daebyun fishing port. We represented the result with 2-D graphics and made comparison between before and after development.

  • PDF

A Review on Lateral Driving Boundary of the Numerical Model Using Time-Dependent Mild Slope Equation (시간의존 완경사방정식을 이용한 파랑변형 수치모형의 측방입사경계의 처리)

  • 김인철;편종근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.2
    • /
    • pp.141-147
    • /
    • 1995
  • Various numerical models for predicting wave deformation have been proposed. Among them a time-dependent mild-slope equation based on the line discharges and surface-elevation changes has been widely used in the wave fields with reflective waves. If applying this model to the case of obliquely-incident waves, not only the open-sea boundary but also one of the lateral boundaries should be treated as incident boundaries. In this study, Maruyama and Kajima (1985), Copeland (1985) and Ohnaka and Watanabe (1987)'s method are reviewed and the characteristics of these methods are analyzed using e normalized wave heights, wave angels and phases obtained from the numerical experiments. It is shown that Ohnaka and Watanabe(1987)'s method provides the most adequate driving boundary is the most suitable in e wave field with a general bottom slope.

  • PDF

Propagation of elastic waves in thermally affected embedded carbon-nanotube-reinforced composite beams via various shear deformation plate theories

  • Ebrahimi, Farzad;Rostami, Pooya
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.495-504
    • /
    • 2018
  • The current study is dedicated to study the thermal effects of wave propagation in beams, reinforced by carbon nanotubes (CNT). Beams, made up of carbon nanotube reinforced composite (CNTRC) are the future materials in various high tech industries. Herein a Winkler elastic foundation is assumed in order to make the model more realistic. Mostly, CNTs are pervaded in cross section of beam, in various models. So, it is tried to use four of the most profitable reconstructions. The homogenization of elastic and thermal properties such as density, Yong's module, Poisson's ratio and shear module of CNTRC beam, had been done by the demotic rule of mixture to homogenize, which gives appropriate traits in such settlements. To make this investigation, a perfect one, various shear deformation theories had been utilized to show the applicability of this theories, in contrast to their theoretical face. The reigning equation had been derived by extended Hamilton principle and the culminant equation solved analytically by scattering relations for propagation of wave in solid bodies. Results had been verified by preceding studies. It is anticipated that current results can be applicable in future studies.

On the Study of Nonlinear Wave Diffraction by the Breakwaters (방파제 주위에서의 비선형 회절 현상에 대한 고색)

  • 조일형;김장환
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.4
    • /
    • pp.350-356
    • /
    • 1993
  • We carry out a numerical calculation to understand the nonlinear wave deformation around breakwaters using the Boussinesq equation, which is weakly nonlinear and weakly dispersive shallow water equation. A numerical method based on a finite element scheme and fourth order Runge-Kutta algorithm is employed to investigate the diffraction of incident waves by the breakwater. As a computational model, two-dimensional wave flume is treated. The breakwaters is perpendicular to the side wall of a channel. From the numerical results, the wave deformations according to the change of the length and the thickness of breakwaters are investigated. We also investigate the effect of the nonlinearity by comparing the results with the linear solutions.

  • PDF

Parametric Study on Shock-Vortex Interaction (충격파-와동 간섭의 파라메터 연구)

  • Chang Keun-Shik;Chang Se-Myong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.921-926
    • /
    • 2005
  • In the idealized model problem of the interaction between a planar travelling shock and a symmetric vortex, the physics of shock distortion and quadrupole sound generation are well known to many researchers. However, the authors have distinguished the weak waves reflected and transmitted by the complicated photograph images obtained from a shock tube experiment. In this paper, we introduces a parametric study based on Navier-Stokes simulation and Rankin vortex model to see the difference of shock deformation shapes. Four combination of the strength of shock and vortex are respectively selected from a parameter plane of shock and vortex strength extended to the strong vortex region. The result shows clearly discernable wave morphology for the main parameters, which is not yet explicitly mentioned by other researchers.

Dynamic Response Analysis of Open Section Structures with Warping Restraint Conditions and Impact Load Durations

  • Chun, Dong-Joon
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.159-164
    • /
    • 2020
  • The response analysis of frame structure with open section beams considering warping conditions and short duration load have been performed. When a beam of frame structure is subjected under torsional moment, the cross section will deform a warping as well as twist. For some thin-walled sections warping will be large, and accompanying warping restraint will induce axial and shear stresses and reduce the twist of beam which stiffens the beam in torsion. Because of impact or blast loads, the wave propagation effects become increasingly important as load duration decreases. This paper presents that a warping restraint in finite element model effects the behavior of beam deformation, dynamic mode shape and response analysis. The computer modelling of frame is discussed in linear beam element model and linear thin shell element model, also presents a correlation between computer predicted and actual experimental results for static deflection, natural frequencies and mode shapes of frame. A method to estimate the number of normal modes that are important is discussed.