• Title/Summary/Keyword: Wave Resistances

Search Result 34, Processing Time 0.024 seconds

Simulation Study of Characteristics for Device of the High Voltage Pulse Generator (고전압 펄스 발생 장치의 특성에 관한 시뮬레이션 연구)

  • Kim, Young-Ju;Shin, Ju-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.80-86
    • /
    • 2012
  • The high-voltage pulse generator is consist of transformers of fundamental wave and harmonic waves, and shunt capacitances. The pulse has the fundamental wave and the harmonic waves that have been increased as a series circuit by the transformers to make high voltage pulse. This paper shows the high-voltage pulse generator simulation using a circuit program with experiment data. In the equivalent circuit, magnetized inductances and loss resistances which affect output voltage, have been obtained. The output capacitor circuits have characteristics of band pass. The output voltages of the pulse width 50% and 25%(PWM) were obtained. The output of the high-voltage pulse generator is 2.5kHz, 1.8kV.

Improvement of the Power Quality by the Reduction of the Inrush Current (여자돌입전류의 저감에 의한 전력품질 향상방법)

  • Seo, Hun-Chul;Rhee, Sang-Bong;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.85-86
    • /
    • 2008
  • This paper analyzes the improvement of the power quality by the reduction of the inrush current. We analyze the existing methods and simulate the segragated point-on-wave closing method selected as the proper method. And we attempts to use the resistive type Superconducting Fault Current Limiter(SFCL) to reduce the transformer inrush current. We simulate the various insertion resistances and analyze the voltage drop. All simulation are performed by EMTP. The simulation results show the validity and effectiveness of a SFCL application and the segragated point-on-wave closing method to reduce the inrush current and improve the power quality.

  • PDF

An Experimental Study on Hull Attitude and Resistance Components of a Ship (선박의 항주자세와 저항성분에 관한 실험적 연구)

  • Suak-Ho,Van;Hyo-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.2
    • /
    • pp.11-19
    • /
    • 1987
  • A Series 60, $C_b=0.60$ model was tested in the towing tank of Seoul National University. Total resistance, hull attitude, wake distributions and wave measured at FR condition(free trim and sinkage) and FX condition(fixed trim and sinkage). From the measured data, residual, viscous and wave pattern resistance components were evaluated and compared. It is found that the changes in wetted surface area should be considered in predictions of frictional resistances, and can be easily found from hydrostatic data and measured mean sinkages without additional tests. Applications of the concept to the geosim tests of Series 60, Wigley, Lucy Ashton models show that the conventional extrapolation method can be improved considerably.

  • PDF

Comparative Results of Weather Routing Simulation (항로최적화기술 시뮬레이션 비교 결과)

  • Yoo, Yunja;Choi, Hyeong-Rae;Lee, Jeong-Youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.2
    • /
    • pp.110-118
    • /
    • 2015
  • Weather routing method is one of the best practices of SEEMP (Ship Energy Efficiency Management Plan) for fuel-efficient operation of ship. KR is carrying out a basic research for development of the weather routing algorithm and making a monitoring system by FOC (Fuel Oil Consumption) analysis compared to the reference, which is the great circle route. The added resistances applied global sea/weather data can be calculated using ship data, and the results can be corrected to ship motions. The global sea/weather data such as significant wave height, ocean current and wind data can be used to calculate the added resistances. The reference route in a usual navigation is the great circle route, which is the shortest distance route. The global sea/weather data can be divided into grids, and the nearest grid data from a ship's position can be used to apply a ocean going vessel's sea conditions. Powell method is used as an optimized routing technique to minimize FOC considered sea/weather conditions, and FOC result can be compared with the great circle route result.

Numerical Simulation of Wave Breaking Near Ship Bow

  • Lee, Young-Gill;Kim, Nam-Chul;Yu, Jin-Won;Choi, Si-Young
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.1
    • /
    • pp.16-27
    • /
    • 2008
  • The interaction between advancing ships and the waves generated by them plays important roles in wave resistances and ship motions. Wave breaking phenomena near the ship bow at different speeds are investigated both numerically and experimentally. Numerical simulations of free surface profiles near the fore bodies of ships are performed and visualized to grasp the general trend or the mechanism of wave breaking phenomena from moderate waves rather than concentrating on local chaotic irregularities as ship speeds increase. Navier-Stokes equations are differentiated based on the finite difference method. The Marker and Cell (MAC) Method and Marker-Density Method are employed, and they are compared for the description of free surface conditions associated with the governing equations. Extra effort has been directed toward the realization of extremely complex free surface conditions at wave breaking. For this purpose, the air-water interface is treated with marker density, which is used for two layer flows of fluids with different properties. Adaptation schemes and refinement of the numerical grid system are also used at local complex flows to improve the accuracy of the solutions. In addition to numerical simulations, various model tests are performed in a ship model towing tank. The results are compared with numerical calculations for verification and for realizing better, more efficient research performance. It is expected that the present research results regarding wave breaking and the geometry of the fore body of ship will facilitate better hull form design productivity at the preliminary ship design stage, especially in the case of small and fast ship design. Also, the obtained knowledge on the impact due to the interaction of breaking waves and an advancing hull surface is expected to be applicable to investigation of the ship bow slamming problem as a specific application.

Dynamic response of underground box structure subjected to explosion seismic wave

  • Huang, Houxu;Li, Jie;Rong, Xiaoli;Fan, Pengxian;Feng, Shufang
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.669-680
    • /
    • 2016
  • In this paper, the underground box structure is discretized as a system with limited freedoms, and the explosion seismic wave is regarded as series of dynamic force acting on the lumped masses. Based on the local deformation theory, the elastic resistances of the soil are simplified as the effects of numbers of elastic chain-poles. Matrix force method is adopted to analyze the deformation of the structure in elastic half space. The structural dynamic equations are established and by solving these equations, the axial force, the moment and the displacement of the structure are all obtained. The influences of size ratio, the incident angle and the rock type on the dynamic response of the underground box structure are all investigated through a case study by using the proposed method.

An Electrical Properties Analysis of CMOS IC by Narrow-Band High-Power Electromagnetic Wave (협대역 고출력 전자기파에 의한 CMOS IC의 전기적 특성 분석)

  • Park, Jin-Wook;Huh, Chang-Su;Seo, Chang-Su;Lee, Sung-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.535-540
    • /
    • 2017
  • The changes in the electrical characteristics of CMOS ICs due to coupling with a narrow-band electromagnetic wave were analyzed in this study. A magnetron (3 kW, 2.45 GHz) was used as the narrow-band electromagnetic source. The DUT was a CMOS logic IC and the gate output was in the ON state. The malfunction of the ICs was confirmed by monitoring the variation of the gate output voltage. It was observed that malfunction (self-reset) and destruction of the ICs occurred as the electric field increased. To confirm the variation of electrical characteristics of the ICs due to the narrow-band electromagnetic wave, the pin-to-pin resistances (Vcc-GND, Vcc-Input1, Input1-GND) and input capacitance of the ICs were measured. The pin-to-pin resistances and input capacitance of the ICs before exposure to the narrow-band electromagnetic waves were $8.57M{\Omega}$ (Vcc-GND), $14.14M{\Omega}$ (Vcc-Input1), $18.24M{\Omega}$ (Input1-GND), and 5 pF (input capacitance). The ICs exposed to narrow-band electromagnetic waves showed mostly similar values, but some error values were observed, such as $2.5{\Omega}$, $50M{\Omega}$, or 71 pF. This is attributed to the breakdown of the pn junction when latch-up in CMOS occurred. In order to confirm surface damage of the ICs, the epoxy molding compound was removed and then studied with an optical microscope. In general, there was severe deterioration in the PCB trace. It is considered that the current density of the trace increased due to the electromagnetic wave, resulting in the deterioration of the trace. The results of this study can be applied as basic data for the analysis of the effect of narrow-band high-power electromagnetic waves on ICs.

Quantitative Method to Measure Thermal Conductivity of One-Dimensional Nanostructures Based on Scanning Thermal Wave Microscopy (주사탐침열파현미경을 이용한 1 차원 나노구조체의 정량적 열전도도 계측기법)

  • Park, Kyung Bae;Chung, Jae Hun;Hwang, Gwang Seok;Jung, Eui Han;Kwon, Oh Myoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.957-962
    • /
    • 2014
  • We present a method to quantitatively measure the thermal conductivity of one-dimensional nanostructures by utilizing scanning thermal wave microscopy (STWM) at a nanoscale spatial resolution. In this paper, we explain the principle for measuring the thermal diffusivity of one-dimensional nanostructures using STWM and the theoretical analysis procedure for quantifying the thermal diffusivity. The SWTM measurement method obtains the thermal conductivity by measuring the thermal diffusivity, which has only a phase lag relative to the distance corresponding to the transferred thermal wave. It is not affected by the thermal contact resistances between the heat source and nanostructure and between the nanostructure and probe. Thus, the heat flux applied to the nanostructure is accurately obtained. The proposed method provides a very simple and quantitative measurement relative to conventional measurement techniques.

Effects of diffraction in regular head waves on added resistance and wake using CFD

  • Lee, Cheol-Min;Park, Sung-Chul;Yu, Jin-Won;Choi, Jung-Eun;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.736-749
    • /
    • 2019
  • This paper employs computational tools to investigate the diffraction effects in regular head waves on the added resistance and wake on the propeller plane. The objective ships are a 66,000 DWT bulk carrier and a 3,600 TEU container ship. Fixed and free to heave and pitch conditions at design speed have been taken into account. Two-phase unsteady Reynolds averaged Navier-Stokes equations have been solved using the finite volume method; and a realizable k-ε model has been applied for the turbulent closure. The free surface is obtained by solving a VOF equation. The computations are carried out at the same scale of the model tests. Grid and numerical wave damping zones are applied to remove unwanted wave reflection at the boundaries. The computational results are analyzed using the Fourier series. The added resistances in waves at the free condition are higher than those at the fixed condition, which are nearly constant for all wavelengths. The wake velocity in waves is higher than that in calm water, and is accelerated where the wave crest locates on the propeller plane. When the vertical motion at the stern goes upward, the wake velocity also accelerated.

Added Resistance and Seakeeping Ability of a Medium-sized Passenger Ship with Gooseneck Bulb (거위목 벌브 형상을 적용한 중형 여객선의 부가저항 및 내항성능)

  • Yu, Jin-Won;Lee, Young-Gill;Ha, Youn-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.290-297
    • /
    • 2015
  • This research is focusing on the added resistance and seakeeping ability of the designed passenger ship with gooseneck bulb(Designed hull) which provide the improvement of resistance performance under calm water condition. By comparing the added resistances and seakeeping abilities of the reference hull and the designed hull form with gooseneck bulb, it is confirmed that there is little difference in the operational comfort and the reduction of ship speed. As a result, the applied gooseneck bulb in this study is verified for the applicability to medium-sized passenger ships with a good resistance performance.