Browse > Article
http://dx.doi.org/10.3795/KSME-B.2014.38.12.957

Quantitative Method to Measure Thermal Conductivity of One-Dimensional Nanostructures Based on Scanning Thermal Wave Microscopy  

Park, Kyung Bae (Dept. of Mechanical Engineering, Korea Univ.)
Chung, Jae Hun (Dept. of Mechanical Engineering, Korea Univ.)
Hwang, Gwang Seok (Dept. of Mechanical Engineering, Korea Univ.)
Jung, Eui Han (Dept. of Mechanical Engineering, Korea Univ.)
Kwon, Oh Myoung (Dept. of Mechanical Engineering, Korea Univ.)
Publication Information
Transactions of the Korean Society of Mechanical Engineers B / v.38, no.12, 2014 , pp. 957-962 More about this Journal
Abstract
We present a method to quantitatively measure the thermal conductivity of one-dimensional nanostructures by utilizing scanning thermal wave microscopy (STWM) at a nanoscale spatial resolution. In this paper, we explain the principle for measuring the thermal diffusivity of one-dimensional nanostructures using STWM and the theoretical analysis procedure for quantifying the thermal diffusivity. The SWTM measurement method obtains the thermal conductivity by measuring the thermal diffusivity, which has only a phase lag relative to the distance corresponding to the transferred thermal wave. It is not affected by the thermal contact resistances between the heat source and nanostructure and between the nanostructure and probe. Thus, the heat flux applied to the nanostructure is accurately obtained. The proposed method provides a very simple and quantitative measurement relative to conventional measurement techniques.
Keywords
Thermal Conductivity; Scanning Thermal Wave Microscopy; Nanostructure; Thermal Contact Resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ocariz, A., Sanchez-Lavega and Salazar, A., 1997, "Photothermal Study of Subsurface Cylindrical Structures.II.Experimental Results," J. Appl. Phys., Vol.81, 7561.   DOI   ScienceOn
2 Kwon, O., Shi, L., Majumdar, A., 2004, "Scanning Thermal Wave Microscopy," J. Heat Transf.-Trans. ASME., Vol. 125, 156.
3 Chung, J. Kim, K., Hwang, G., Kwon, O., Lee, J., Park, S. and Choi, Y., 2010, "Nanoscale Range Finding of Subsurface Structures by Measuring the Absolute Phase Lag of Thermal Wave," Rev. Sci. Instrum., Vol. 81, 053701.   DOI   ScienceOn
4 Arpaci, V.S, 1966, "Conduction Heat Transfer", pp. 324-335
5 Rojo, M.M., Grauby, S., Rampnoux, J.M., Caballero-Calero, O., Martin-Gonzalez, M. and Dilhaire, S., 2013, "Fabrication of $Bi_2Te_3$ Nanowire Arrays and Thermal Conductivity Measurement by $3{\omega}$ Scanning Thermal Microscopy," J. Appl. Phys., Vol. 113, 054308.   DOI   ScienceOn
6 Yu, C., Saha, S., Zhou, J., Shi, L., Cassell, A. M., Cruden, B. A., Ngo, Q. and Li, J., 2006, "Thermal Contact Resistance and Thermal Conductivity of A Carbon Nanofiber," J. Heat Transf.-Trans. ASME, Vol. 128, pp.234-239.   DOI   ScienceOn
7 Christofferson, J., Maize, K., Ezzahri, Y., Shabani, J., Wang, X. and Shakouri, A., 2008, "Microscale and Nanoscale Thermal Characterization Techniques," J. Electron. Packag., Vol. 130, 041101   DOI   ScienceOn
8 Freitag, M., Steiner, M., Martin, Y., Perebeinos, V., Chen, Z., Tsang, J.C. and Avouris, P., 2009, "Energy Dissipation in Graphene Field-Effect Transistor," Nano Lett., Vol.9, pp. 1883-1888.   DOI   ScienceOn
9 Tong, T., Zhao, Y., Delzeit, L., Kashani, A., Meyyappan, M. and Majumdar, A., "Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials," IEEE Trans. Compon. Pack. Manuf. Technol., Vol. 30, pp. 92-100.
10 Chen, Z.G., Han, G., Yang, L., Cheng, L. and Zou, J., 2012, "Nanostructured Thermoelectric Materials: Current Research and Future Challenge," Prog. Nat. Sci., Vol. 22, 535-549.   DOI   ScienceOn
11 Kim, W.C., Zide, J., Gossard, A., Klenov, D., Stemmer, S., Shakouri, A. and Majumdar, A., 2006, "Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors," Phys. Rev. Lett., Vol. 96, 045901.   DOI   ScienceOn
12 Rojo, M. M., Calero, O.C., Lopeandia, A. F., Rodriguez-Viejo, J. and Martin-Gonzalez, M., 2013, "Review on Measurement Techniques of Transport Properties of Nanowires," Nanoscale, Vol. 5, 11526.   DOI   ScienceOn
13 Zhou, J., Jin, C., Seol, J. H., Li, X. and Shi, L., 2005, "Thermoelectric Properties of Individual Electrodeposited Bismuth Telluride Nanowires," Appl. Phys. Lett., Vol. 87, 133109.   DOI   ScienceOn
14 Mavrokefalos, A., Moore, A.L., Pettes, M.T., Shi, L., Wang, W. and X. Li, 2009, "Thermoelectric and Structural Characterizations of Individual Electrodeposited Bismuth Telluride Nanowires," J. Appl. Phys., Vol.105, 104318.   DOI   ScienceOn
15 Gorbachuk, N. P., Bolgar, A. S., Sidorko, V. R. and Goncharuk, L. V., 2004, "Heat Capacity and Enthalpy of $Bi_2Si_3\;and\;Bi_2Te_3$ in the Temperature Range 58-1012K", Powder Metall. Met. Ceram., Vol. 43, pp. 284-290.   DOI