• Title/Summary/Keyword: Wave Control

Search Result 1,879, Processing Time 0.031 seconds

Simulation of the Temperature and Salinity Along $36^{\circ}N$ in the Yellow Sea with a Wave-Current Coupled Model

  • Qiao, Fangli;Ma, Ji-An;Yang, Yong-Zeng;Yuan, Yeli
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.35-45
    • /
    • 2004
  • Based on the MASNUM wave-current coupled model, the temperature and salinity structures along $36^{\circ}N$ in the Yellow Sea are simulated and compared with observations. Both the position and strength of the simulated thermocline are similar to data analysis. The wave-induced mixing is strongest in winter and plays a key role in the formation of the upper mixed layer in spring and summer. Numerical experiments suggest that in the coastal area, wave-induced mixing and tidal mixing control the vertical structure of temperature and salinity.

DEINKING OF COLORED OFFSET NEWSPRINT WITH ENZYME TREA TMENT IN COOPERATION WITH ULTRASONIC WAVE

  • Yimin XIE;U, Hong-W;Yanming LAI
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.149-152
    • /
    • 1999
  • A new process for deinking of colored offset newsprint, i.e. enzyme treatment in cooperation with ultrasonic wave was developed in the present study. The physical characteristics such as fiber length, coarseness, crystallinity index of the deinked pulps were investigated and the sugar residues released from the treatment were analyzed. It was found that colored offset newsprint could be deinked effectively by cellulase treatment when ultrasonic wave was applied. The brightness increased by 5% ISO over that of control experiment and the pigment content was reduced markedly. Though the ultrasonic wave had little effect on the strength and crystallinity of the pulp, the treatment of enzyme combined with ultrasonic wave reduced the coarseness and fiber length to some extent. It was also found that ultrasonic wave could accelerate the hydrolysis of cellulose and hemicellulose during the cellulase treatment.

Hydrodynamic Behavior Analysis of Stacked Geotextile Tube by Hydraulic Model Tests (수리모형시험을 통한 다단식 지오텍스타일 튜브의 수리동역학적 거동분석)

  • 신은철;오영인;김성윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.705-712
    • /
    • 2002
  • Geotextile tube is environmentally sustainable technology and has been applied in hydraulic and coastal engineering applications. Geotextile tube is composed in permeable fabrics and Inside dredged materials, and hydraulically or mechanically filled with dredged materials. These tube are generally about 1.0m to 2.0m in diameter, through they can be sized for any application. The tubes can be used solely, or stacked to add greater height and usability. Stacked geotextile tubes will create by adding the height necessary for some breakwaters and embankment, therefore increasing the usability of geotextile tubes. This paper presents the hydrodynamic behavior of stacked geotextile tube by hydraulic model tests. The hydraulic model test conducted by structural condition and wave conditions. Structural condition is installation direction to the wave(perpendicular band 45$^{\circ}$), and wave condition is varied with the significant wave height ranging from 3.0m to 6.0m. Based on the test results, the hydrodynamic behaviors such as structural stability, wave control capacity, and strain are interpreted.

  • PDF

An Experimental Study on the Characteristics of the Impulsive Wave Discharged from the Open End of a Bend Pipe (곡관출구로부터 방출되는 펄스파의 특성에 관한 실험적 연구)

  • 이동훈;김희동;뢰척구준명
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.9
    • /
    • pp.406-413
    • /
    • 2001
  • The current study depicts and experimental work of the impulsive wave discharged from the exit of several kinds of right-angle bend pipes, which are attached to the open end of a simple shock tube. The weak normal shock wave with Mach number from 1.02 to 1.20 is employed to obtain the impulsive wave propagating outside the exit of the pipe bends. The experimental data of the magnitude of the impulsive wave and its propagation directivity are analyzed to characterize the impulsive waves discharged from the right-angle bend pipes and compared with those from a straight pipe. The impulsive waves are visualized by a Schlieren optical system. A computation work using the two-dimensional, unsteady, compressible Euler equation is also carried out to represent the experimented impulsive waves. The results obtained show that a right-angle miter bend considerably reduces the magnitude of the impulsive wave and its directivity toward to the pipe axis, compared with the straight pipe. It is believed that the right angle miter bend pipe can play a role of passive control agianst the impulsive wave.

  • PDF

Construction of a System for the Generation and Analysis of Design Waves using the Genetic Algorithms (유전자 알고리즘을 이용한 설계파 생성 및 해석 시스템 구축)

  • Jeong, Seong-Jae;Shin, Jong-Keun;Choi, Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.1 s.145
    • /
    • pp.96-102
    • /
    • 2006
  • In this study, an optimization routine with genetic algorithms is coupled for the selection of free variables for the production of a control signal for the motion of wave board in the numerical wave tank. An excitation function for the controlling of the wave board is formulated on basis of amplitude modulation for the generation of nonlinear wave packets. The found variables by the optimization serve for the determination of wave board motion both with the computation and with the experiment. The breaking criterion of the water waves is implemented as boundary condition for the optimization procedure. With the analysis of the time registration on the local position in the wave tank the optimization routine is accomplished until the given design wave with defined surface elevation is found. Water surface elevation and associated fields of velocity and pressure are numerically computed.

Automatic control of experimental apparatus for sound's directivity measurement direction acoustic wave (소리의 방향성 측정을 위한 실험기기의 자동제어)

  • Jarang, Sun-Suck;Ko, Jae-Ha;Lee, Je-Hyeong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.591-594
    • /
    • 2004
  • The directivity of the sound pressure increases the sensitivity of the incoming sound from specific directions. The directivity measurement of the sound pressure is usually done in an anechoic room using a steping motor. In this paper a replaceable anechoic chamber was designed for the acoustic directivity pattern measurement. Electrical equipments were interfaced with a PC for experiment automatic control. Some comparative results are shown in the result.

  • PDF

Adaptive Harmonic Control for DC Input Voltage Fluctuation of PWM Inverter (PWM인버터의 DC입력전달 맥동에 대한 고조파 적응제어)

  • 이윤종;임남혁
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.11
    • /
    • pp.896-904
    • /
    • 1989
  • PWM techniques which eliminate and reduce harmonics of output voltage in PWM Inverter driving System with fluctuating input volotage are described. First, harmonic factors are analyzed from harmonic equation of general PWM waveform and by examination of control possiblity of each factor, controllable factor is selected. Applying controllable factor to NPWM, PWM techniques using reference wave and carrier wave modulation are introduced. Actually, by the experiment applied with this strategy, the reduction of harmonics of output voltage is confirmed.

  • PDF

Development of an Measuring System for Pulse Wave Corresponding to Different Radial Artery Diameters Caused by Indentation (요골동맥 직경 변화에 따른 맥파 측정 시스템 개발)

  • Lee, Jeon;Woo, Young-Jae;Jeon, Young-Ju;Lee, Yu-Jung;Kim, Jong-Yeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2351-2357
    • /
    • 2008
  • Noninvasive radial artery pulse wave has been widely used not only for the pulse wave analysis(PWA) itself but also for assessment of arterial stiffness with estimated aortic pulse wave from peripheral pulse wave. However, it has been found that the deformation of pulse shape can be caused readily by changing measuring position, indentation pressure, and so on. So, in this study, we have developed a system which can measure radial pulse wave and skin displacement simultaneously while the indentation body goes down to occlude subject's radial artery. This system can be divided into a measuring apparatus part, an indentation control hardware part, a data acquisition part and a control and computation part. And, the measuring apparatus consists of an arm-rest, a step motor, an indentation body, a laser displacement sensor(LK-G30, Keyence Co.) and pulse wave sensor. Under load-free condition and radial artery loaded condition, the evaluation of developed system has been performed. From these results, we can conclude: 1) The developed system can control the indentation body quantitatively and the adopted laser displacement sensor shows linear output characteristic even with skin as a reflector. 2) This system can measure the pulse wave and the displacement of indentation body, that is, skin displacement simultaneously at each specific level of indentation body. 3) This system can provide the number of motor steps used to get down the indentation body, the measured skin displacement, the calculated indentation pressure, the calculated pulse pressure and the pulse waveform as well as the information generated by combining these with each others. 4) This system can reveal the relationship between the morphological changes of pulse wave and the estimated displacement of radial artery wall by indentation. Consequently, the developed system can furnish more abundant information on radial artery than previous diagnosis systems based on tonometric measurement. In further study, we expect to setup the standard measuring process and to concrete the algorithm for the estimation of radial artery's diameter and of displacement of radial artery's wall. Furthermore, with well designed clinical studies, we hope to turn out the usefulness of developed system in the field of cardiovascular system evaluation.

PDFF Controller Design by CDM for Position Control of Traveling-Wave Ultrasonic Motor

  • Nundrakwang, S.;Isarakorn, D.;Benjanarasuth, T.;Ngamwiwit, J.;Komine, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1847-1852
    • /
    • 2003
  • Ultrasonic motors have many excellent performances. A variety of ultrasonic motors has been developed and used as an actuator in motion control systems. However, this motor has nonlinear characteristics. Therefore, it is difficult to achieve the precise position control system incorporating with the ultrasonic motor. This paper describes a position control scheme for traveling-wave type ultrasonic motor using a pseudo-derivative control with feedforward gains (PDFF) controller designed by the coefficient diagram method (CDM). The PDFF control system satisfies both the tracking and regulation performances, which are the most important for the precise position control system. The CDM is shown to be an efficient and simple method to design the parameters of PDFF controller. The effectiveness of the proposed control system is demonstrated by experiments.

  • PDF