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Abstract: Ultrasonic motors have many excellent performances. A variety of ultrasonic motors has been developed and used as an 
actuator in motion control systems. However, this motor has nonlinear characteristics. Therefore, it is difficult to achieve the precise 
position control system incorporating with the ultrasonic motor. This paper describes a position control scheme for traveling-wave 
type ultrasonic motor using a pseudo-derivative control with feedforward gains (PDFF) controller designed by the coefficient 
diagram method (CDM). The PDFF control system satisfies both the tracking and regulation performances, which are the most 
important for the precise position control system. The CDM is shown to be an efficient and simple method to design the parameters 
of PDFF controller. The effectiveness of the proposed control system is demonstrated by experiments. 
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1. INTRODUCTION 

 

    The ultrasonic motor is an innovative actuator that has 
shown a high potential in direct-drive application. During the 
past two decades, various ultrasonic motors have been 
developed and investigated in the literature [1-2]. One of the 
most popular types is the traveling-wave ultrasonic motor. The 
operating principle of the traveling-wave motor is to produce 
the traveling wave at the stator by two orthogonal bending 
modes. The superposition of the two bending modes creates 
the elliptical motions on the surface of the stator. If the rotor is 
in contact with the stator by a preload, the rotor can be rotated 
by friction force. The merits of the ultrasonic motor are high 
precision, quick response, hard brake with no backlash, high 
power to weight ratio and negligible electromagnetic 
interference (EMI). While the ultrasonic motor has high 
potential in precise position control system, it is difficult to 
control the position of ultrasonic motor with high performance 
due to its nonlinear features. Therefore, many control schemes 
have been proposed to achieve the precise position control of 
ultrasonic motors, such as fuzzy reasoning control [3], neural 
network [4-5] and adaptive control [6-7]. These control 
techniques however have many difficulties to be applied to 
actual implementation. 
    Hence, this paper proposes an effective position control 
scheme using a pseudo-derivative control with feedforward 
gains (PDFF) controller designed by the coefficient diagram 
method (CDM) [8] for traveling-wave ultrasonic motor. The 
PDFF controller must be designed to satisfy both the tracking 
and regulation performances, which are the most important for 
the precision position control system [9]. However, it is quite 
complicated to design and tune all of the parameters. 
Therefore, the CDM which is an algebraic control design 
approach is adopted to design the PDFF controller parameters. 
This method is an efficient tool to design the parameters of 
PDFF controller based on the stability and the speed of the 
controlled system in order to meet the desired performance 
criteria. Stability is designed from the stability index γ , and 
speed is designed from either the equivalent time constant τ  
or the tuning factor α . In this work, the transfer function of 
the PDFF control system in term of stability index γ , 
equivalent time constant τ  and tuning factor α  has been 
developed in general form. The coefficients of the numerator 
and denominator of the transfer function are related to the 

controller parameters algebraically in an explicit form. 
Consequently, the PDFF controller parameters can be obtained 
appropriately by assigning the values of stability index γ , 
equivalent time constant τ  and tuning factor α .  
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2. CONTROL SYSTEM STRUCTURE 
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    The general PDFF control system structure shown in Fig. 1 
consists of a plant, a feedforward controller, a feedback 
controller and an integral controller. The transfer function 
from  to  is given as ( )R s ( )C s
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    In order to use CDM to design the controller parameters 
properly, the controlled system consisting of the CDM 
standard block diagram of SISO system with the feedforward 
and feedback controllers is proposed (see Fig. 2).  and 

 are the polynomials of the plant , ,  

and  are the polynomials of the CDM controller,  

is the polynomial of the feedforward controller and  is 
the polynomial of the feedback controller. After rearranging 
the plant and the feedback controller shown in Fig. 2,  
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and  which are the polynomials of the modified plant 

 can be obtained and is shown in Fig.3. 
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 Fig. 2 CDM standard block diagram of SISO system with the 
feedback controller. 
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From the block diagram of Fig. 3 it follows: 
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iγ =                  [2.5,2,2,...,2]  ;                                (11) 1,..., 1i n= −

 
    It is seen from (2) and (3) that the feedforward controller 

 has an influence on the transfer function from  to 

 and can be used to increase the speed of the transient 
response of the controlled system, while the transfer function 
from  to  is not affected. 
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3.  COEFFICIENT DIAGRAM METHOD 
 
    The CDM is an algebraic control design approach. 
Polynomials are used for system representation. CDM design 
is based on a stability index γ  and an equivalent time 
constant τ  which will be defined later.  
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    From Fig. 3, the transfer function of the modified plant 
 in the polynomial forms can be expressed as * ( )pG s
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and the controller in the polynomial forms are given by   
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where   and .  is a pre-filter and is set to be 

 in order to obtain the step response with zero steady-state 
error. Hence, the characteristic polynomial of the closed-loop 
system is  
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where  are the coefficients of the characteristic 
polynomial. The stability index γ , the equivalent time 

constant τ  and stability limit γ  are defined as follows: 
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where . In general, the equivalent time constant 

 and the standard stability index  are chosen as: 
1,..., 1i n= −

τ iγ
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where  is the user specified settling time. In the actual 
design, the stability index γ = , γ γ  are strongly 
recommended. However, for , the condition can be 
relaxed as 
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Sometimes the larger value of stability index  is selected in 
order to improve robustness related parameter change. The 
standard stability index values stated in (11) can be used to 
design the controller if the following condition is satisfied 
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where  and  are the coefficients of the plant at  and 

. If the above condition is not met, γ  is first 
increased then γ  and so on, until (13) is satisfied. From (7) 
to (9), the coefficient  can be written by 
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Then the characteristic polynomial can be expressed in term of  

, τ  and γ  as 0a i
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    From the sufficient condition for stability by Lipatov, the 
stability is guaranteed when all γ ’s are larger than 1.5. In 
addition, if all γ ’s are greater than 4, all the roots are 
negative real. 
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4. CONTROLLER DESIGN 
 

     A designing method of the PDFF controller by CDM to 
meet desired performance criteria is discussed in this section. 
The parameters of PDFF controller are designed based on the 
stability and the speed of the controlled system. Stability is 
designed from the standard stability index γ , and speed is 
designed from the equivalent time constant τ and the tuning 
factor α . The stability index γ , the equivalent time constant 

, and the tuning factor α  are defined based on the closed-
loop transfer function.    
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    In order to derive the closed-loop transfer function of PDFF 
control system in term of ,  and α , the closed-loop 
transfer function given by equation (2) may be expressed by 
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where , and ’s and b ’s are constants. The 
denominator polynomial  is the characteristic polynomial 
of the closed-loop system, and its coefficients can be found 
from 

m n≤ a
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This equation is the same form of equation (15). 
    The CDM is mainly used to design the characteristic 
polynomial of the closed-loop system. However, this method 
can be extended to design the coefficients of the numerator 
polynomial  as well [10]. Thus, the relationship among 
the coefficients of the numerator polynomial  can be 
written by 
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where  is the tuning factor. The equivalent time constant τ  
is scaled by the tuning factor α  so that the response speed can 
be adjusted. The value of tuning factor α  is defined as 

. Substituting each coefficient b  into the numerator 
polynomial , which is expressed in term of  ,  and 
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Hence, the transfer function of PDFF control system in term of 

, τ  and α  can be obtained by iγ
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    This transfer function is a general form for designing the 
PDFF controller. Then, the parameters of PDFF controller can 
be designed by following procedures: 

1) Derive the closed-loop transfer function (1) which 
contains the unknown parameters of PDFF controller.  

2) Define the settling time  in order to find the 
equivalent time constant τ  from Equation (10), and determine 
the proper values of stability index  and tuning factor α . 
Then, substituting these parameters to the closed-loop transfer 
function (20).  

st

γ i

3) The PDFF controller parameters are obtained by 
equating the transfer function (1) to the transfer function (20). 
 

5. MODELING OF ULTRASONIC MOTOR 
 

5.1 Experimental setup 
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Fig. 4 Experimental system. 

 
    In this work, an ultrasonic motor model USR30 is used. The 
motor is driven by SHINSEI motor driver model D6030. This 
driver generates the two electrical signals (V  and V ) of 
identical frequency but with a phase difference to feed the 
ultrasonic motor. The input of driver is the control input 
voltage , which represents the desired speed of the motor. 
The incremental rotary encoder detects the angle position with 
the resolution of 0.045 degree. The rotor position is obtained 
by using the output pulse signal of the encoder. The 
experimental system of position control for ultrasonic motor is 
shown in Fig. 4. 
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5.2 Mathematical model 
 
    The control input voltage  can also represent the thrust 
force generated from the piezoelectric ceramics and 
transmitted to the elastic body of stator. When the rotor is 

inV



attached to the stator with the preload, the thrust force  will 
produce the torque T  at the rotor. Therefore, the relation 
between the control input voltage V  and the torque  at the 
rotor can be expressed by 

in T

/V

f iT =

/ ra

2

1
s +

B

c

s

V TT
T




( ) c

n

Vt t T
B

θ = − + t TTe−   0

 
f inT k V=            (21) 

 
where  denotes the thrust force constant ( ). By 

the Newton’s second law, the torque T  is applied to the 
inertia and friction. Hence 
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where  is the moment of inertia of the motor and load 
( ),  is the viscous-friction coefficient of the motor 
and load ( ) and  θ  is the angular 
displacement of the motor shaft (radian). Static and coulomb 
frictions would also be presented to some degree, but they 
must be neglected in a linearized analysis.  

J
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    Assuming that all initial conditions are zero, and taking the 
Laplace transform of Equation (22), we obtain the following 
equation: 
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system and the system type is one. 
 
5.3 Parameter identification 
 
    By applying the control input voltage V  to the system of 
Fig. 4, the output of the system can be obtained as  

in
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where  is the magnitude of the constant control input. 
Expanding θ  into partial fractions gives 
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Taking the inverse Laplace transform of equation (25), yields 
 

, for t ≥                                (27) 

 
    The response curve of equation (27) to the constant control 
input voltage V  is shown in Fig. 5. As t  approaches to 
infinity, the equation for the steady-state response θ  can be 
written by 
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Fig. 5 Response to a constant control input voltage V . c

 
By considering equation (28) and Fig. 5, it is found that  
       1)  The straight line θ  extrapolated back to the time axis 
and intersects this axis at . Thus, T  can be found first.  

ss

t = T
       2) From the slope of the steady-state response  ssθ

( c nV B ) nB,  can be found. 

      3)   From equation (26),  can be found. nJ
Therefore, the parameters of ultrasonic motor can be obtained 
from the experiment data. 
 

6. EXPERIMENTAL RESULTS 
 
    The effectiveness of the PDFF controller developed for the 
position control of traveling-wave ultrasonic motor will be 
evaluated in this section. In order to design the PDFF 
controller, the model parameters of the ultrasonic motor must 
be known first. Applying the control input voltage 2 volts, the 
open-loop response of the ultrasonic motor (see Fig. 6) can be 
obtained.  
 

 
Fig. 6 Open-loop response. 

 
    From the open-loop response curve, the slope of the steady-
state response is 18.86, the straight line of steady-state 
response extrapolated back to the time axis and intersects this 
axis at 0.02 second. Thus, the model parameters  and  
are 0.00212 and 0.10604  respectively. Since the plant is 
approximated to be a second-order system, the structures of 
feedforward and feedback controllers shown in Fig. 1 become 
as proportional-derivative control actions.  and  are the 

nJ
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derivative and proportional gains of feedback controller 
respectively,  is the integral gain, and  and  are the 
derivative and proportional gains of feedforward controller  
respectively. The PDFF control algorithm is first used to study 
the system responses of the proposed position control scheme, 
and then to study the disturbance rejection capability. Finally, 
the effect of tuning factor to the system responses is also 
investigated. 
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6.1 System responses of position control 
 
    The PDFF controller parameters are designed with three 
sets of stability index values to study the system responses to a 
step input. The equivalent time constant τ  is set to be 0.4 
second, for the settling time  second, and the tuning 
factor α  is . The PDFF controller parameters are shown 
in Table 1. The system responses for the 90-degree step input 
are shown in Fig. 7.  

1st =

 
    Table 1 Parameters of PDFF controller.  

 
Stability 
indexγ  i

pK  
iK  dK  pfK  dfK  

1

2

4.5,
5.0

γ
γ
=
=

 1.3416 3.3539 0.0132 0.7379 0.0361 

1

2

5.0,
5.0

γ
γ
=
=

 1.6562 4.1406 0.0265 0.9109 0.0401 

1

2

5.5,
5.0

γ
γ
=
=

 2.0041 5.0102 0.0397 1.1022 0.0441 

 
    The system performances of these responses are also 
summarized in Table 2. It is found from the results that the 
three responses to 90-degree step input are almost identical. 
Furthermore, there are no overshoot and steady-state error. 

 
Table 2 System performance comparison. 

 

Stability index γ  i rt  (sec) st  (sec) Overshoot (%) 

1 24.5, 5.0γ γ= =  0.419 0.765 0.000 

1 25.0, 5.0γ γ= =  0.439 0.861 0.000 

1 25.5, 5.0γ γ= =  0.451 0.875 0.000 
    

 
Fig. 7 Responses to a step input with different stability index 

values. 

6.2 System responses of constant disturbance 
     In this sub-section, the disturbance rejection capability is 
studied.  The responses, that a step disturbance equivalent to 1 
volt is applied to the input terminal of ultrasonic motor while 
PDFF control system holds the stationary position at 2 
seconds, are shown in Fig. 8. 
     

 
Fig. 8 Responses to a step disturbance with different stability 

index values. 
 

    It can be observed from the Fig. 8 that the PDFF control 
system can rapidly correct the position error caused by 
disturbance. Moreover, the effect of step disturbance is small 
when the PDFF controller designed by larger value of stability 
index. 
 
6.3 Effect of tuning factor 
 
    The tuning factor α  effects directly to the response speed. 
Normally, a faster response can be obtained from a larger 
value of tuning factor α . However, the fast response may 
lead to high overshoot. Hence, the effect of tuning factor α  to 
response speed should be studied in order to find its satisfied 
value that gives a fast response without overshoot. As the 
tuning factor directly affects the response speed but not the 
disturbance rejection capability, only the responses to the step 
input with various tuning factor values are considered.  
 

 
Fig. 9 Responses to a step input with various values of 

tuning factor. 



    The responses to the 90-degree step input for 
 and τ =  with various values of tuning 

factor are shown in Fig. 9. The results show that a faster 
response can be obtained from a larger value of tuning factor, 
but the response has high overshoot. The satisfied values of 
tuning factor that give a fastest response without overshoot 
should be around 0.7. 

1 25.5, 5.0γ γ= = 0.4

 
6. CONCLUSIONS 

 

    The PDFF controller design by CDM to satisfy both 
tracking and regulation performances in position control of 
traveling-wave ultrasonic motor has been introduced. The 
reasonable mathematical model of the motor has been derived 
so that CDM can be employed. The transfer function of PDFF 
control system has been developed in general form by means 
of CDM. This form can be applied not only to the second-
order plant, but also a higher-order plant as well. As the result, 
the PDFF controller parameters can be obtained easily and 
properly by assigning the values of stability index, equivalent 
time constant and tuning factor. Hence, it can be concluded 
that CDM is successful in the PDFF controller design for 
position control of traveling-wave ultrasonic motor.  
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