• Title/Summary/Keyword: Water-treatment sludge

Search Result 628, Processing Time 0.027 seconds

Investigation on management conditions for vermicomposting of night soil in Field at N Sewage Water plant (N하수처리장 정화조.분뇨케익의 재활용을 위한 지렁이 사육 조건검토)

  • Kim, K.Y.;Lee, C.B.;Choi, H.G.;Phae, C.G.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.102-113
    • /
    • 2000
  • This study was conducted to investigate the expandibility of sludge treatment by earthworm through real scale experiment and the optimum counter-plan for organic sludge treatment. For the purposes, sludge removal efficienciesof night-soil using earthworm and it's behavior according to the transplanting methods of the earthworm on non-cover worm bed or in the green house worm bed were compared. Sludge uptake rates on non-cover worm bed for 6 months were $0.27{\sim}0.33ton/m^2$ and the excrement of earthworm yields $0.15ton/m^2$(44.1~46.7% of raw night soil sludge dosage). These results were not much different from the worm bed in the green house. The average and maximum earthworm density were about $6.5kg/m^2$ and $7kg/m^2$ respectively on the non-cover worm bed. The density of the worm bed was comparatively higher in spring and fall terms but lower in summer. The amount of old earthworm was much plenty than young earthworm on the non-cover worm bed, resulting in reverse distribution type of pyramid. From the experiments on non-cover worm bed(7,000 pyeong)and in the green house worm bed(1,200 pyeong), it was concluded that landfill and transporting cost could be reduced when the earthworm was applied for the night-soil sludge treatment. Profits from the excrement sale of earthworm was 9,600,000 won. Through this study, it was founded that earthworm treatment method for organic sludge are much more environmentally sound than landfill treatment.

  • PDF

Characteristics of Advanced Wastewater Treatment Process Using High MLSS in Anoxic Tank (무산소조에서 고농도 미생물을 이용한 하수고도처리공정의 처리특성)

  • Son, Dong-Hun;Lim, Bong-Su;Park, Hye-Sook
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.42-47
    • /
    • 2004
  • This study was accomplished to develope an advanced wastewater treatment process using high MLSS in anoxic tank aimed to improve nutrient removal and to reduce wasting sludge. It was operated with 4 Modes with varing solid concentration and internal recycle ratios. Mode I, II, III was operated 1.0~1.5% MLSS concentration at anoxic tank with 50% sludge recycle rate, however, each internal recycle rate were 100%, 200%, 300% and Mode IV was operated 1.5~2.0% MLSS concentration at anoxic tank with 50% sludge recycle rate and 100% internal recycle rate. The COD removal efficiency didn't show any big difference from Mode I to IV. The average COD removal rate was over than 90%. The T-N removal rate was 73%, the highest rate in all mode. The 36% of SCOD is used for the denitrification and phosphorus release in the anoxic tank. Specific denitrification rate was 3.5mg $NO_3{^-}-N/g$ Mv/hr and denitrification time was 0.7hr. As MLSS concentration is higher in anoxic tank as denitrification time would be shorter. The T-P removal rate was average 70%. The phosphorus release accomplished from the anoxic tank because the anaerobic condition was prevalent in the anoxic due to the prompt completion of denitrification. Sludge production was 0.28 kgVSS/kg $BOD_{removed}$ under the 1.5% MLSS and 17 day SRT. It is prominent result which has 40% sludge reduce comparing with traditional activate sludge system.

Development of Biomedia using Waste Sewage Sludge - Evaluation of Basic Properties and Determination of Optimum Mixing Ratio of Sludge and Loess - (하수슬러지를 이용한 생물담체 개발 - 기초물성 평가 및 황토최적혼합비 결정 -)

  • Jeong, Soo Il;Sohn, In Shik;Jeong, Seung Hyun;Jeong, Byung Gon
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.225-230
    • /
    • 2010
  • Dumping of waste sludge to ocean will be prohibited in Jananuary, 2012. Thus, various methods of sludge recycling are intensively studied. To present new way of sewage sludge recycling method, feasibility of making porous biological support media was investigated. Porous biological support media was made of sludge cake from sewage treatment plant and loess. They were mixed in varying ratio and burnt in high temperature to ensure sufficient mechanical strength. It was evaluated that about 67% of sewage sludge were ignitible. The ignitible portion play an important role in making pore in biomedia during ignition process. It was evaluated that optimum mixing ratio of loess to sludge cake was 25% in respect of compressive strength. In results of observation using scanning electron microscope (SEM), inner structure of biomedia become simple when the contents of loess are increased.

Solubilization of wasted sludge using high voltage impulse technique (고전압 임펄스 기술을 활용한 슬러지 가용화)

  • Cho, Seung-Yeon;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.3
    • /
    • pp.257-262
    • /
    • 2017
  • Several disposal processes for waste sludge from wastewater treatment plants such as landfill, ocean dump, incineration, reuse as fuels or fertilizers are practiced. However, ocean dumping is prohibited by international treat. New constructions of landfill sites or incineration facilities are limited by NIMBY and reuse processes are still suffering from low energy yield. Therefore, development of alternative processes for sludge disposal are currently needed. In this study, alternative technique for sludge solubilization using HVI (high voltage impulse) was suggested and verified experimentally. Sludge solubilization was carried out for 90 minutes using HVI discharge with peak voltage of 16 kV and pulse duration for 40 microsecond. About 3~9 % of MLSS and MLVSS concentration were reduced, but the soluble COD, TN, TP of the sludge increased to 372 %, 56 % and 102 % respectively. It indicates that the flocs and/or cells of the sludge were damaged by HVI. These resulted in flocs-disintegration and cells-lysis, which means the internal matters were bursted out of the flocs as well as the cells. Thus, electrical conductivity in bulk solution was increased. All of the results verified that the HVI could be used as an alternative technique for sludge solubilization processes.

Assessment of the Struvite Crystallization Process for Phosphate Removal and Recovery from a Sludge Treatment System of a Domestic Wastewater Treatment Plant (하수처리장 슬러지처리 계통에서의 인 제거 및 회수를 위한 Struvite 결정화 공정 적용성 평가)

  • Baek, Seung Ryong;Lee, Byung Joon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.8
    • /
    • pp.462-469
    • /
    • 2017
  • Eutrophication and shortage of phosphate ore raise the necessity of phosphate removal and recovery from wastewater treatment plants. Especially, a sludge treatment system containing highly concentrated phosphate should be targeted for phosphate removal and recovery. This study thus aimed to evaluate the capability of the struvite crystallization process for phosphate removal and recovery from a sludge treatment system of a wastewater treatment plant. Analysis on phosphate concentrations and masses in the sludge treatment system revealed that digested sludge and centrate have phosphate concentrations and masses, high enough to adopt the struvite crystallization process. Chemical equilibrium modeling indicated that the struvite crystallization reaction substantially occurred with pH higher than 8 and $Mg^{2+}$ concentration 1.2 times higher than its theoretical requirement. A series of batch tests with digested sludge and centrate indicated that the phosphate removal reaction by struvite crystallization followed a first-order kinetics and reached over 80% removal efficiency at equilibrium. Aeration in the batch tests was found to purge $CO_2$ in sludge or centrate and increase pH up to 8.7, without adding NaOH. Thus, we concluded that the struvite crystallization process could be an efficient and economical process for phosphate removal and recovery from a wastewater treatment plant.

Effect of Application of Water Treatment Sludge on the Yields and Chemical Properties of Soybean(Glycine max) and Carrot(Daucus carota) (정수장슬러지 시용이 대두 및 당근의 수량과 화학적 특성에 미치는 영향)

  • Chang, Ki-Woon;Lee, In-Bog;Lim, Jae-Shin;Kim, Young-Han;Lee, Sang-Suk;Lim, Hyun-Taek
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.275-281
    • /
    • 1996
  • The objective of the study was to investigate the effects of water treatment sludge (WTS) on the growth of soybean and carrot, and uptake of some inorganic components in the plants. WTS was incorporated to field at the rates of 0, 1, 3, and 5 tons per 10a on the basis of dry weight. With the application of the sludge, OM and CEC in the soil increased slightly while the concentration of available phosphorous decreased. And heavy metals, including Pb, Cd, Cr, As and Hg, were not detected at the harvest stage in crops. With an increase in the application of the sludge, the concentration of phosphorous in the seed of soybean and the root of carrot tended to be decreased. There seems no correlation between rate of application of the sludge and uptake of Al in the plants. The yield of soybean was the highest when applied to one ton sludge and the yield on carrot increased with an increase in rate of applied sludge. Also, the concentration of carotene increased with an increased application of the sludge. But, application of WTS showed to deteriorate the visual quality with an irregularity of carrot's surface. This results indicate that application of WTS will be give a positive and negative effects on soil and crops.

  • PDF

Pre-treatment Technology of Wastewater Sludge for Enhanced Biogas Production in Anaerobic Digestion (혐기소화에서의 바이오가스 생산 증진을 위한 슬러지 전처리 기술)

  • Kim, Dong-Jin
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.355-369
    • /
    • 2013
  • Economic feasibility is one of the most important factors in energy production from regenerative biomass. From the aspect, biogas from anaerobic digestion of wastewater sludge is regarded as the most economical because of its cheap substrate and additional income from the disposal of waste sludge. Sludge hydrolysis has been regarded as the rate limiting step of anaerobic digestion and many sludge pre-treatment technologies have been developed to accelerate anaerobic sludge digestion for enhanced biogas production. Various sludge pre-treatment technologies including biological, thermo hydrolysis, ultrasonic, and mechanical methods have been applied to full-scale systems. Sludge pre-treatment increased the efficiency of anaerobic digestion by enhancing hydrolysis, reducing residual soilds, and increasing biogas production. This paper introduces the characteristics of various sludge pre-treatment technologies and the energy balance and economic feasibility of each technology were compared to prepare a guideline for the selection of feasible pre-treatment technology. It was estimated that thermophilic digestion and thermal hydrolysis were most economical technology followed by Cell rupture$^{TM}$, OpenCEL$^{TM}$, MicroSludge$^{TM}$, and ultrasound. The cost for waste sludge disposal shares the biggest portion in the economic analysis, therefore, water content of the waste sludge was the most important factor to be controlled.

Treatment of milking parlor wastewater containing tetracycline by magnetic activated sludge and contact oxidation process

  • Gaowa, Gaowa;Sakai, Yasuzo;Xie, Xiaonan;Saha, Mihir Lal;Ihara, Ikko
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.32-36
    • /
    • 2021
  • Milking parlor wastewater contains not only high concentrations of organic compounds, but often animal antibiotics. To discharge the antibiotics to public water area cause problem of antibiotics resistant bacteria. Magnetic separation was applied into improvement of milking parlor wastewater treatment process. A new process, composed of a magnetic activated sludge (MAS) process and a contact oxidation (CO) process, was proposed in this study. This process was evaluated by the simulated milking parlor wastewater (4500 mg/L CODCr and 10 mg/L tetracycline) using a bench scale experimental setup. As a result, the process was able to removed 97% CODCr as well as 94% tetracycline. The MLVSS (mixed liquor volatile suspended solids) concentration of MAS was maintained at 12000 mg/L without excess sludge drawing. This process was considered to be useful as treatment process for milking parlor wastewater in which waste-milk including antibiotics is often discharged.

Effects of sludge and $CO_2$ addition on advanced treatment of swine wastewater by using microalgae (미세조류를 이용한 양돈폐수 고도처리에서 슬러지 및 이산화탄소의 첨가의 영향)

  • Lim, Byung-Ran;Park, Ki-Young;Lee, Ki-Say;Lee, Soo-Koo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.307-312
    • /
    • 2011
  • The potential of algal-bacterial culture was investigated for advanced treatment of animal wastewater. Fed-batch experiments were carried out to examine treatability of nitrogen and phosphorus in different microbial consortium: Chlorella vulgaris, activated sludge, three microalgae strains (Scenedesmus, Microcystis, Chlorella) and Bacillus consortium, and three microalgae strains and sludge consortium. Single culture of C. vugaris showed the better efficiency for nitrogen removal but was not good at organic matter and phosphorus removal compared with activated sludge. Three microalgae and Bacillus consortium was best culture among the culture and consortium for pollutants removal tested in this experiment. Effect of $CO_2$ addition was studied by using three microalgae and Bacillus consortium. $CO_2$ addition enhanced T-P removal efficiency up to 60%. However, removal efficiencies of T-N and ammonia nitrogen reduced on the contrary.

The Study of Biofouling Control and Cause Material in Hybrid Process of Pure Oxygen and Submerged Membrane Bio-reactor (순산소 고율포기시스템 및 침지식 MBR융합공정에서 Biofouling 제어 및 원인물질 규명에 관한 연구)

  • Lee, Sang-Min;Kim, Mi-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.44-53
    • /
    • 2011
  • Membrane bio-reactor (MBR) has several advantages over the conventional activated sludge process, including a high biomass, low sludge production, and better permeate quality. Therefore, the MBR have gained popularity for municipal and industrial wastewater treatment. However the MBR usually were used for sewage and low streng th wastewater treatment because of membrane fouling problem and limitation of oxygen transfer into biomass. In this study, the hybrid process combining MBR and pure oxygen was tested for high strength organic wastewater treatment in the COD loading range from 2 to $10kgCOD/m^3{\cdot}day$. The hybrid process, membrane coupled pure oxygen high compact reactor (MPHCR), had been operated for one year and operation parameters, the effect of COD loading, MLSS concentration and the location of membrane module were studied for membrane fouling characteristic. Also membrane resistance test and the component of foulant was analyzed to investigate what is specific foulant in the MBR.