Treatment of milking parlor wastewater containing tetracycline by magnetic activated sludge and contact oxidation process |
Gaowa, Gaowa
(Utsunomiya University)
Sakai, Yasuzo (Utsunomiya University) Xie, Xiaonan (Utsunomiya University) Saha, Mihir Lal (University of Dhaka) Ihara, Ikko (Kobe University) |
1 | Yasuzo Sakai, "Characteristics of Magnetic Activated Sludge Process Utilizing Magnetic Separation and that Social Implementation," Y. Sakai, Y. Matsuda, T. Sasaki and S. Sasaki: "Basic strategy of designing magnetic separators using a permanent magnet for high-concentration magnetic sludge during magnetic activated sludge processing," TEION KOGAKU, (Journal of Cryogenics and Superconductivity Society of Japan), Vol. 55, No. 3, pp.151-163, 2011, (in Japanese). |
2 | Y. Sakai: "New development of magnetic separation utilization of water treatment technology using microorganisms," Journal of the Magneto-Science Society of Japan, Vol. 13, No. 1, pp. 48-51, 2019 (in Japanese). |
3 | C. Ying, I. Ihara, Y. Sakai, K. Aoki, T. Yamashiro. K. Umetsu, "Nitrous oxide emission from a magnetic activated sludge (MAS) process to treat the dairy milking parlour wastewater," Australian Journal of Experimental Agriculture, Vol. 48, pp.96-97, 2008. DOI |
4 | Chun Ying, Kazutaka Umetsu, Ikko Ihara, Yasuzo Sakai, Takaki Yamashiro, "Simultaneous removal of organic matter and nitrogen from milking parlor wastewater by a magnetic activated sludge (MAS) process," Journal of Bioresource Technology, Vol. 101, No. 12, pp. 4349-4353, 2010. DOI |
5 | E. Shima, I. F. Svoboda, S. Tsutsumi, H. Ohkubo, "Waste management system of dairy cattle farms in Japan," Water Science Technology, Vol. 45, No. 12, 63-68, 2002. DOI |
6 | E. J. Dunne, N. Culleton, G. O'Donovan, R. Harrington, A. E. Olsen, "An integrated constructed wetland to treat contaminants and nutrients from dairy farmyard dirty water," Ecological Engineering, Vol. 24, pp. 221-234, 2004. |
7 | S. Nishijima., S. Takeda, "Superconducting high gradient magnetic separation for purification of wastewater from paper factory," IEEE Transactions on Applied Superconductivity, Vol. 16, Issue 2, pp. 142-145, 2006. |
8 | Y. Sakai, H. Saigo, K. Iimura, T. Nikata, N. Kato and T. Watanabe, "Biodegradation of bisphenol A wastewater by activated magnetic sludge process," Abstracts of CSJ Conference Vol. 70. pp. 235, 2004. (in japanese) |
9 | Y. Sakai, S. Kurakata, F. Takahashi, "Magnetic forced sedimentation of flocs in activated sludge supplemented with ferromagnetic powder of iron oxide," J. Biosci. Bioeng, Vol. 71, No. 3, pp. 208-210, 1991. |
10 | Bing Li, Xuxiang Zhang a, Feng Guo, Weimin Wub, Tong Zhang, "Characterization of tetracycline resistant bacterial community in saline activated sludge using batch stress incubation with high-throughput sequencing analysis," Water Research, Vol. 47, No. 13, pp. 4207-4216, 2013. DOI |
11 | Y. Sakai, T. Terakado, F. Takahashi, "A sewage treatment process using highly condensed activated sludge with an apparatus for magnetic separation," Fermentation and Bioengineering, Vol. 78, No. 1, pp. 120-122, 1994. (in japanese) DOI |
12 | M. Shohouji, Y. Sakai and M. L. Saha, "Decolorization and biodegradation of dye wastewater by anaerobic/aerobic magnetic activated sludge process," Abstracts of CSJ Conference Vol. 82 pp. 39, 2010. (in japanese) |
13 | Yumika Kitazono, Ikko Ihara, Gen Yoshida, Kiyohiko Toyoda, Kazutaka Umetsu, "Selective degradation of tetracycline antibiotics present in raw milk by electrochemical method," Journal of Hazardous Materials, Vol. 243, No. 12, pp. 112-116, 2012. DOI |
14 | Y. Sakai, "Challenging of wastewater treatment technology break through by magnetic separation-Possibility of step-up from permanent magnet to super conductive magnet," Booklet of the 225th Topical Sympo. the Magnetics Society of Japan (2019) pp.7, (in Japanese). |
15 | Y. Sakai, K. Tani, F. Takahashi, "Sewage treatment under conditions of balancing microbial growth and cell decay with a high concentration of activated sludge supplemented with ferromagnetic powder," J. ferment. Bioeng. Vol. 74, pp. 413-415, 1992. DOI |
16 | F. Sakaguchi., F. Mishima., Y. Akiyama., S. Nishijima. (2010). Fundamental Study on Magnetic Separation of Aquatic Organisms Using a Superconducting Magnet," IEEE Transactions on Applied Superconductivity, Vol. 20, No.3, pp.969-972. DOI |
17 | M. Fang, F. Mishima, Y. Akiyama, S. Nishijima. (2010). Fundamental study on magnetic separation of organic dyes in wastewater," Physica C: Superconductivity and its Applications, Vol. 470, No.20, pp.1827-1830. DOI |
18 | H. Okada., Y. Kudo., H. Nakazawa., A. Chiba., K. Mitsuhashi., T. Ohara., H. Wada. (2004). Removal System of Arsenic From Geothermal Water by High Gradient Magnetic Separation-HGMS Reciprocal Filter," IEEE Transactions on Appiled Superconductivity, Vol. 14, No.2, pp.1576-1579. DOI |
19 | Luke Randall, Katharina Heinrich, Robert Horton, Lucy Brunton, Matthew Sharman, Victoria Bailey-Horne, Meenaxi Sharma, Ian McLaren, Nick Coldham, Chris Teale, Jeff Jones, "Detection of antibiotic residues and association of cefquinome residues with the occurrence of Extended-Spectrum b-Lactamase (ESBL)-producing bacteria in waste milk samples from dairy farms in England and Wales in 2011," Research in Veterinary Science, Vol. 96, No. 1, pp. 15-24, 2014. DOI |
20 | Nolwenn Prado, Juan Ochoa, Abdeltif Amrane, "Biodegradation by activated sludge and toxicity of tetracycline into a semiindustrial membrane bioreactor," Bioresource Technology, Vol. 100 No. 15, pp. 3769-3774, 2009. DOI |
21 | Chisato Mukuta, Yoko Akiyama, "Fundamental study on sustainable treatment system of mine water using magnetized solid catalyst," Progress in Superconductivity and Cryogenics, Vol. 21, No.2, pp.15-21. DOI |
22 | Y. Sakai, S. Kurakata, F. Takahashi, "Recovery and reuse of ferromagnetic powder supplemented in activated sludge for magnetic separation," Mizu kankyo gakkai-shi (Journal of Japan Society on Water Environment), Vol. 15, pp. 126-130, 1992. (in japanese) |
23 | Y. Sakai, S. Abe, T. Nikata, K. Iimura, N. Kato and T. Watanabe, "Biodegradation of polyvinylalcohol in water by magnetic activated sludge process," Abstracts of CSJ Conference Vol. 70. pp. 233, 2004. (in japanese) |
![]() |