• Title/Summary/Keyword: Water-soluble salt

Search Result 260, Processing Time 0.031 seconds

Preparation and Characterization of Low Molecular Weight Water Soluble Chitosan Gene Carrier Fractioned according to Molecular Weight (저분자량 수용성 키토산이 분급화된 유전자 전달체의 제조 및 특성)

  • Jang, Min-Ja;Kim, Dong-Gon;Jeong, Young-Il;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.555-561
    • /
    • 2007
  • To obtain low molecular weight water soluble chitosan (LMWSC) with various molecular weights, chitosan oligosaccharides (COS) with lactic acid was separated by using ultrafilteration technique and LMWSC with a free amine group was prepared by the novel salts-removal method. The characterization of LMWSC removed the lactic acid and degree of deacetylation (DDA) were identified by FT-IR and $^1H-NMR$ spectra. Polydispersity index (PDI) was $1.278{\sim}1.499$, which indicates a relatively molecular weight distribution. To identify the potential as a gene carrier, we confirmed the transfection efficiency of COS fractioned according to molecular weight successfully and the salt-removed LMWSC using 293T cell. Also, LMWSC derivatives prepared for improvement transfection efficiency were evaluated using Balb/C mice.

Characteristics of Water Soluble Ions in Fine Particles during the Winter and Spring in Daegu (대구지역 겨울철과 봄철 미세먼지의 수용성 이온성분 특성)

  • Park, Ji-Yeon;Lim, Ho-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.627-641
    • /
    • 2006
  • Atmospheric $PM_{2.5}$ and $PM_{10}$ were measured to investigate their levels and water-soluble ions(${SO_4}^{2-},\;{NO_3}^-,\;{NO_2}^-,\;Cl^-,\;{NH_4}^+,\;Na^+,\;Ca^{2+},\;Mg^{2+},\;and\;K^+$) in Daegu between February 17 and April 18, 2006. Four Asian dust episodes during the period were examined for the influence of Asian dust on the particulate properties. Daily $PM_{2.5}\;and\;PM_{2.5-10}$ concentrations ranged between $10.83{\sim}136.76{\mu}g/m^3$ with a mean of $38.43{\mu}g/m^3$ and $16.13{\sim}409.13{\mu}g/m^3$ with a mean of $79.98{\mu}g/m^3$, respectively. For all measured ions the mean fractions of $PM_{2.5}\;and\;PM_{2.5-10}$ were 51.8% and 28.9% being lowered to 30.7% and 9.4%, respectively, during the dust episodes. Secondary ions (i.e., non-sea salt ${SO_4}^{2-},\;{NO_3}^-,\;and\;{NH_4}^+$) contributed 44.3% and 14.8% to $PM_{2.5}\;and\;PM_{2.5-10}$, respectively, with a decreased contribution during the episodes. The average equivalent ratio of ${NH_4}^+$ to the sum of ${SO_4}^{2-}\;and\;{NO_3}^-$ was 0.99 and 0.89 for $PM_{2.5}\;and\;PM_{2.5-10}$, respectively, indicating high source strength of $NH_3$ and its dominance in the neutralization of the acidic ions. Correlations and charge balance between ions suggest that neutralization of the acidic ions results in substantial depletions of carbonate both in $PM_{2.5}\;and\;PM_{2.5-10}$ and chloride only in $PM_{2.5}$.

Effects of Organic Acids on Availability of Phosphate and Growth of Corn in Phosphate and Salts Accumulated Soil

  • Kim, Myung-Sook;Park, Seong-Jin;Lee, Chang-Hoon;Yun, Sun-Gang;Ko, Byong-Gu;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.3
    • /
    • pp.265-270
    • /
    • 2016
  • Accumulated Phosphate can be released by ligand exchange reaction of organic acids. The objective of this study was to evaluate effects of the organic acids on the availability of phosphate and the growth of crop in phosphate and salts accumulated soil. Soil samples were collected from farmer's plastic film house. Available phosphate and electrical conductivity of soil were $3,005mg\;kg^{-1}$ and $16.63mg\;kg^{-1}$ which were 6 and 8 times higher than the optimum range of soil for crop growth, respectively. Corns were cultivated in pots for 2 months. Treatments were no treatment (control), phosphate fertilizer (P), citric acid (CA) 1, 5, 10 mM, and oxalic acid (OA) 1, 5, 10 mM. Water soluble phosphorus, available phosphate, corn growth and uptake were determined after cultivation. Results showed that organic acids increased water soluble phosphorus and available phosphate. For the level of 10 mM, the order of effectiveness of organic acids for water soluble P was citric acid (44%) > oxalic acid (32%). Height and dry weight of corns were increased significantly by the treatment of citric acid 1 and 5 mM. Also, corn absorbed more phosphorus, nitrogen, potassium, calcium and magnesium in the treatment of citric acid 1 mM than these of other treatments. Even though phosphate availability of soil was enhanced by addition of citric acid 10 mM, the growth of corns decreased because high concentration of citric acid caused salt damage by increasement of electrical conductivity. Thus, the citric acid of 1 mM has the potential to improve the availability of phosphate and the healthy growth of corns.

Elastic Wave Characteristics According to Cementation of Dissolved Salt (용해된 소금의 고결화에 따른 탄성파 특성)

  • Eom, Yong-Hun;Truong, Q. Hung;Byun, Yong-Hoon;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.75-86
    • /
    • 2009
  • Salt, one of the most common soluble materials in engineering soil, may have an effect on mechanical behaviors of soils under its cementation process. In order to investigate this natural phenomenon, non-soluble material by using glass beads is mixed with salt electrolyte and cemented by using oven to evaporate water. Three different sizes of glass bead particles, 0.26, 0.5, and 1.29 mm, with different salt concentration, 0, 0.1, 0.2, 0.5, 1.0, and 2.0M, are explored by using P- and S-waves, excited by bender elements and piezo disk elemets, respectively. The velocities of the P-wave and S-wave of the particulate medium cemented by salt show three stages with the degree of saturation: 1) S-wave velocities increase while P-wave velocities reduce with degree of saturation changing from 100% to 90%; 2) Both velocities are stable with degree of saturation varying from 90% to 10%; 3) The velocities change enormously when the specimens are nearly dry with degree of saturation from 10% to 0%. Besides, the resonance frequencies of S-wave show similar stages to the S-wave velocities. This study demonstrates meaningful trends of elastic wave characteristics of geo-materials according to the cementation of dissolved salt.

Effect of Boiling Methods on the Physicochemical Properties of Su Ri Chwi(Synurus palmatopinnonatifidus var. indivisus KITAM.) (삶는 방법에 따른 수리취(Synurus palmatopinnonatifidus var. indivisus KITAM.)의 이화학적 특성)

  • Kim, Myung-Hee;Park, Yong-Kon;Jang, Myung-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.6
    • /
    • pp.701-705
    • /
    • 1992
  • The effect of different boiling methods(with distilled water, 1% salt added water and 1% sodium bicarbonate added water) on the physicochemical properties of Su Ri Chwi (Synurus palmatopinnonatifidus var. indivisus KITAM.) were investigated. The addition of 1% sodium bicarbonate (baking soda) to the boiling water resulted in an increase in the pH of effluent. The green value of cooked Su Ri Chwi was simillar to the raw material. Su Ri Chwi cooked in 1% sodium bicarbonate added for 10minutes retained higher chlorophyll and vitamin C contents than those of Su Ri Chwi treated in distilled water and 1% salt water for 30minutes. 70% of the water-soluble proteins in raw Su Ri Chwi was albumin. However, albumin was decreased by the method used. The contents of glutelin, globulin, and prolamin were increased by the cooking, vice versa. The contents of NDF, ADF, cellulose, and lignin were decreased regardless of the method used, on the other hand, the content of hemicellulose was increased.

  • PDF

A Textbook Analysis and Teaching Practices on Dissolution in Elementary School (용해 현상에 대한 초등학교 과학 교과서의 내용 분석 및 지도 실태)

  • Kang, Dae-Hun;Paik, Seoung-Hey
    • Journal of Korean Elementary Science Education
    • /
    • v.22 no.2
    • /
    • pp.138-148
    • /
    • 2003
  • This study was to analyze how elementary school science textbooks explain dissolution and to examine the patterns of elementary school teachers' conceptions on dissolution and the teaching practices on dissolution of elementary school teachers. According to the result of the textbook analysis, the textbooks based on the 7th curriculum didn't explain dissolution very differently from those based on the 6th curriculum. The contents dealing with dissolution in the textbooks of 7th curriculum became difficult gradually as the year went up, but the connected organization of the contents made students learn it easily. For example, in order to learn dissolution introduced first in the 3rd year 2nd semester textbook, students would tell soluble substance in water from insoluble substance in water as they put powdered substance in water. In the 5th year 1st semester textbook students were supposed to acquire the knowledge related to dissolution through the designed activities such as comparing solubility produced by different solvents and defining a solvent, a solute, dissolution, and a solution. In addition, teachers' guide for 5th year 1st semester textbook elucidated the principle of dissolution using attraction concept that was scientific. The result of the survey on teachers showed that 90% of elementary school teachers understood the dissolution of salt in water just as millet particles' filling the space between bean particles and they responded that they demonstrated millet particles' filling the space between been particles when they taught the dissolution of salt in water. When it comes to teachers who had the right idea on dissolution as the attraction conception, understanding was one thing and teaching was another, because they often instructed dissolution as the space conception in the real teaching.

  • PDF

Durability and Crack Control of Concrete Using Fluosilicates Based Composite (규불화염계 복합 조성물을 혼입한 콘크리트의 균열제어 및 내구성)

  • Yun, Hyun-Do;Yang, Il-Seung;Kim, Do-Su;Khil, Bae-Su;Han, Seung-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.57-64
    • /
    • 2006
  • The crack presented in concrete structures causes a structural defect, the durability decrease, and external damages etc. Therefore, it is necessary to improve durability through the effort to control the crack. Fluosilicic acid($H_2SiF_6$) is recovered as aqueous solution which absorbs $SiF_4$ produced from the manufacturing of industrial-graded $H_3PO_4$ or HF. Generally, fluosilicates prepared by the reaction between $H_2SiF_6$ and metal salts. Addition of fluosilicates to cement endows odd properties through unique chemical reaction with the fresh and hardened cement. Mix proportions for experiment were modulated at 0.45 of water to cement ratio and $0.0{\sim}2.0%$ of adding ratio of fluosilicate salt based inorganic compound. To evaluate correlation of concrete strength and adding ratio of fluosilicate salt based inorganic compound, the tests were performed about design strength(21, 24, 27 MPa) with 0.5% of adding ratio of fluosilicate salt based inorganic compound. Applications of fluosilicate salt based inorganic compound to reduce cracks resulted from plastic and drying shrinkage, to improve durability are presented in this paper. Durability was evaluated as neutralization, chloride ion penetration depth, freezing thawing resistant tests and weight loss according reinforcement corrosion. It is ascertained that the concrete added fluosilicate salt based inorganic compound showed m ability to reduce the total area and maximum crack width significantly as compared non-added concrete. In addition, the durability of concrete improved because of resistance to crack and watertightness by packing role of fluosilicate salt based inorganic compound obtained and pozzolanic reaction of soluble $SiO_2$ than non-added concrete.

Halotolerant Plant Growth Promoting Bacteria Mediated Salinity Stress Amelioration in Plants

  • Shin, Wansik;Siddikee, Md. Ashaduzzaman;Joe, Manoharan Melvin;Benson, Abitha;Kim, Kiyoon;Selvakumar, Gopal;Kang, Yeongyeong;Jeon, Seonyoung;Samaddar, Sandipan;Chatterjee, Poulami;Walitang, Denver;Chanratana, Mak;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.355-367
    • /
    • 2016
  • Soil salinization refers to the buildup of salts in soil to a level toxic to plants. The major factors that contribute to soil salinity are the quality, the amount and the type of irrigation water used. The presented review discusses the different sources and causes of soil salinity. The effect of soil salinity on biological processes of plants is also discussed in detail. This is followed by a debate on the influence of salt on the nutrient uptake and growth of plants. Salinity decreases the soil osmotic potential and hinders water uptake by the plants. Soil salinity affects the plants K uptake, which plays a critical role in plant metabolism due to the high concentration of soluble sodium ($Na^+$) ions. Visual symptoms that appear in the plants as a result of salinity include stunted plant growth, marginal leaf necrosis and fruit distortions. Different strategies to ameliorate salt stress globally include breeding of salt tolerant cultivars, irrigation to leach excessive salt to improve soil physical and chemical properties. As part of an ecofriendly means to alleviate salt stress and an increasing considerable attention on this area, the review then focuses on the different plant growth promoting bacteria (PGPB) mediated mechanisms with a special emphasis on ACC deaminase producing bacteria. The various strategies adopted by PGPB to alleviate various stresses in plants include the production of different osmolytes, stress related phytohormones and production of molecules related to stress signaling such as bacterial 1-aminocyclopropane-1-carboxylate (ACC) derivatives. The use of PGPB with ACC deaminase producing trait could be effective in promoting plant growth in agricultural areas affected by different stresses including salt stress. Finally, the review ends with a discussion on the various PGPB activities and the potentiality of facultative halophilic/halotolerant PGPB in alleviating salt stress.

Effects of Salt Stress on Inorganic Ions and Glycine Betaine Contents in Leaves of Beta vulgaris var. cicla L. (염 스트레스가 근대(Beta vulgaris var. cicla L.)의 무기이온 및 glycine betaine 함량에 미치는 영향)

  • Choi, Sung-Chul;Kim, Jong-Guk;Choo, Yeon-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.388-394
    • /
    • 2013
  • Growth, inorganic solutes and glycine betaine accumulation in spinach beet (Beta vulgaris var. cicla L.) were studied under different salt conditions. Plants of fortythree days old were assessed by growing for a further 10 and 20 days at four NaCl concentrations (0, 100, 200, 300 & 400 mM). The dry weight of leaves was maximal in plants which were grown at 100 to 200 mM NaCl treatments and after 10d it was decreased slightly at salt treatments of more than 300 mM NaCl. Under the salt conditions, leaves of B. vulgaris contained high inorganic ions to maintain low water potential, but low water soluble carbohydrate contents. Total ionic content and osmolality increased with increasing salt concentration. Salt stress led to a preferential accumulation of glycine betaine in leaves of B. vulgaris, especially for the 200 mM NaCl treatment. These findings suggest that a high degree of NaCl tolerance of B. vulgaris resulted from the accumulation of glycine betaine, which is known to have osmoprotectant properties in the cytoplasm.

Effect of a Number of Organic Sources on the Ammonification and Nitrification of Urea and Soil Reaction (요소의 암모니아화 및 질산화와 토양반응에 미친 수종 유기물의 영향)

  • 오왕근;허지희;김재영
    • Asian Journal of Turfgrass Science
    • /
    • v.5 no.1
    • /
    • pp.47-53
    • /
    • 1991
  • A laboratory experiment was conducted in order to learn the effect of a number of organic matters on the ammonification and nitrification of urea, and the reaction of soil, applied to a loamy upland soil poor in orgnic matter(<1.5%, without plants 1.The ammonification of urea was most pronounced in one week period immediatly after fertilizer and water treated, after which a rapid decrease of it was followed showing no accumulation at the end of 3rd week. Owing to the accumlation of ammonium, pHs of treated soils were read 7.0 to 7.3 from 6.8~6.9. 2.Nitrification was also progressed rapidly in the first one week period so that the accumulation of NO$_3$-N surpassed that of ammonia during this period. After the 1st week the accumulation of N0$_3$-N was continuously increased showing the maximum at the end of 4 weeks following a sharp decrease at the end of 5th weeks. The accumulation of NO$_3$-N dropped soil pH from 6.8-7.0 to 6. 0-6.2,but the decrease of NO-N at the end of 5th weeks brought up soil pH to 6.4-6.6. again. 3.Amino acid fermentation byproduct rich in salt, paticularly chloride, slowed down the ammonification and nitrification of urea. 4.The application of organic matter diminished the acidifying effect of chemical fertilizers. The diminishing effect of soluble humic acid and amion acid fermentation byproduct showed greater than that of solid organic matter in this experiment, which might be own to the application of a rather small amount of water soluble organic matters. Rice straw powder among solid organic matters appeared to be the least in the diminishing effect above. It may be reasoned that these soluble organic matters decomposes rapidly so as to affect Soil pH, but solid organic matters, particularly the rice straw powder, form acidic humus.

  • PDF