• Title/Summary/Keyword: Water-side reinforcement

Search Result 12, Processing Time 0.025 seconds

The Evaluation of Seepage Characteristics in Reinforced Embankment Constructed on Low Permeable Clay Layer Through Centrifuge Model Tests (원심모형실험을 활용한 투수성이 낮은 기초지반에 위치한 보축 제방에서의 침투 거동)

  • Jin, Seok-Woo;Choo, Yun-Wook;Kim, Young-Muk;Kim, Dong-Soo;Im, Eun-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.27-39
    • /
    • 2012
  • In this paper, a series of centrifuge tests were performed to evaluate the seepage characteristic of reinforced embankment. The centrifuge models simulated an actual embankment reinforced by enlargement of levee cross-section. The centrifuge models have the same conditions except the locations of enlargement with low permeable material : water-side and land-side. In addition, the prototype embankment is constructed on low permeable clay layer. In the case of water-side reinforcement, the reinforced zone makes water head down and the saturated zone of embankment propagates slowly. In the case of land-side reinforcement embankment, the saturated zone enlarged relatively faster but the amount of exit water at land-side toe was very small because of the land-side reinforcement zone. The low permeable clay foundation layer was being continuously saturated by the inflow from the embankment as well as the uplift flow from the permeable layer induced by the excess pore water pressure.

A Study on the Safety Ratio of Reservoir Embankment by Seismic Reinforcement Section Shape (내진보강 단면형상에 따른 국내 저수지 제방의 안전율에 대한 검토)

  • Lim, Seonghun;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.343-355
    • /
    • 2021
  • Agricultural reservoirs seek human convenience by supplying agricultural water and providing flood damage effects and rest areas at the same time, but preventing them from aging reservoirs and earthquakes is important. The safety of levees is influenced by field material properties such as soil parameter values of the granular materials that make up the levees, but since precision safety diagnosis or general literature values are diverted, the final safety factors are limited to material properties alone. Since safety factors are determined by physical characteristic values and embankment shapes and have a significant impact on safety factors, accurate contemplation is required when examining reinforced cross sections. Therefore, this study analyzed the case of reasonable and economical reinforcement intersections when designing '◯◯reservoir' in Goheung-geun, Jeollanam-do using the GEP-SLOPE program to enable rational economic design of reinforcement intersections through repeated reviews. As a result of reducing and analyzing the first, second, and third seismic reinforcement of the levees, it was confirmed that the safety ratio was secured even with a significantly smaller amount of reinforcement than the first, second, and lower slopes by obtaining design standards of 1.20. In addition, when determining all seismic reinforcement cross-sectional shapes, it was confirmed that the shape that reinforces only the lower side rather than the upper side of the slope and the entire slope was economical with minimized cross-sectional reinforcement.

SPH Modeling of Hydraulics and Erosion of HPTRM Levee

  • Li, Lin;Rao, Xin;Amini, Farshad;Tang, Hongwu
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • Post-Katrina investigations revealed that most earthen levee damage occurred on the levee crest and landward-side slope as a result of either wave overtopping, storm surge overflow, or a combination of both. In this paper, combined wave overtopping and storm surge overflow of a levee embankment strengthened with high performance turf reinforcement mat (HPTRM) system was studied in a purely Lagrangian and meshless approach, two-dimensional smoothed particle hydrodynamics (SPH) model. After the SPH model is calibrated with full-scale overtopping test results, the overtopping discharge, flow thickness, flow velocity, average overtopping velocity, shear stress, and soil erosion rate are calculated. New equations are developed for average overtopping discharge. The shear stresses on landward-side slope are calculated and the characteristics of soil loss are given. Equations are also provided to estimate soil loss rate. The range of the application of these equations is discussed.

An Analysis on the Failure Mechanism of Slope behind a Plant Complex of Gimhae due to Typhoon Rusa (태풍 루사에 의한 김해 OO단지 사면붕괴 발생원인 분석)

  • Kang, In-Kyu;Ryu, Jeong-Soo;Kim, Hong-Taek;Baek, Seung-Cheol
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.263-266
    • /
    • 2007
  • In this paper, analysis results on the failure of slope behind a Plant Complex of Gimhae due to typhoon Rusa in 2002 are introduced. The left side of the slope was reinforced by soil nails and the right side of the slope was going to construct slope reinforcement works. In the slope failure, the damage area is about $34,000m^2$, the lower width of slope failure is about 230m, the upper width of slope failure is about 50m, and the height of slope failure is about 120m. The elevation of a bedrock in the right side of the slope was lower than the left side of the slope. Due to the depth of weathered soils and weathered rocks in right side of the slope was thick, it will be expected that the effects of pore-water pressure during the rainfalls are large. For the analysis of the failure mechanism, 3-dimensional numerical analysis was carried out by FLAC-3D.

  • PDF

A Study on the Repair Method for Performance Degradation Cause of Korean Arch Bridge -Focused on the Seonamsa Seungseonggyo, Songgwangsa Geukrockgyo- (홍예교 성능저하 원인에 따른 보수방안 고찰 - 선암사 승선교·송광사 극락교를 중심으로 -)

  • Kim, Jeong-Eon;Cheon, Deuk-Youm
    • Journal of architectural history
    • /
    • v.23 no.1
    • /
    • pp.7-19
    • /
    • 2014
  • This study considers the proper repair techniques by examining the most representative repair cases of the Korean arch bridges and proposes the constructional manual which can apply similar occasions. The cases are Seonamsa Seungseongyo and Songgwangsa Geukrockgyo where this researcher had taken part in the repair works. This Study proposes the maintenance construction manual about the performance degradation drew by performance degradation of the both Korean arch bridges in the maintenance process. First, arch bridge maintenance should be carried out in the dry season, when water is impermeable in the bottom surface of the bridge. Moreover, risk factors of the maintenance should be excluded to secure the water vally flow, the bypass and the temporary bridge. Second, prior to repair, it has to precede (1)3D shooting (2)formal examination (3)structure safety test (4)geological and lithic surveys (5)arch curvature establishment and makeshift frame settlement before transformation (6)relationship expert comments. Third, if the baduk and the foundation stones are inevitable to replace due to performance degradation on the foundation, it should use the high quality stones and secure greater stress by extending the standard range. The foundation on irregular rock needs to be flattened and underside on the replaced materials require Grengyijil to deliver the equal loads. Fourth, In the process of dismantling the stones of the arched bridge, it could make heavy weathering degree and not reuse the materials. Charge should converge the expert advices to choose the reuseable, the conservate and the alternative materials, and increase the reutilization of the raw materials by preservation and reinforcement treatments. Fifth, the side wall should be repaired by the rubble work technique which is not able to pile compost satiety, so it must use long depth of masonary stones for reinforcement. It is considered to reinforce the stone wall in shore as much as possible and protect the abutment and the side wall on the upstream for the arch bridge maintenance works.

Behavior of Seepage and Seismic for the Deterioration Reservoir Using Numerical Analysis (수치해석에 의한 노후저수지의 침투 및 동적거동)

  • Park, Sung-Yong;Chang, Suk-Hyun;Lim, Hyun-Taek;Kim, Jung-Meyon;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.3
    • /
    • pp.81-90
    • /
    • 2016
  • It is significant to redevelop the deterioration reservoir through raising for countermeasure to climate change and Earthquake improvement of reservoir. This study aims to investigate the behavior of deterioration reservoir with poor-fabricated core subjected to raising water level and earthquake using numerical analysis. From the analysis results, water level raising and earthquakes induce crack and subsidences at the crown and the front side of deterioration reservoir. For the reinforcement of the deterioration reservoir is required appropriate measures method and raised method suitable, drainage and slope protection method judged to be necessary.

A STUDY ON THE SAFETY ANALYSIS OF ROCK FILL DAM (1) (필댐의 안정성 해석 연구 (1))

  • HoWoongShon;DaeKeunLee
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.3
    • /
    • pp.165-177
    • /
    • 2003
  • The purpose of this paper is to analyze the behavior and to study the safety evaluation of the Unmun Dam located in Cheongdo-Gun of GyeongBuk Province, Korea. For this purpose, soil analyses including boring data, geophysical surveys were conducted. In this paper, especially many geophysical methods were adopted to configure out the subsurface situation of dam. Applied geophysical methods were: 1) electric resistivity survey, 2) high frequency magnetotelluric (HFMT) survey, 3) ground penetrating radar (GPR) survey, 4) seismic refraction survey, 5) seismic cross-hole tomography survey, and 6) high frequency impedance (ZHF) survey. Each of geophysical surveys were analyzed and joint analyses between geophysical surveys were also performed to deduce the more reliable subsurface information of Dam by using the features and characteristics of each geophysical survey. Since many defects, such as gravel and weathered rock blocks in the dam core, and lots of amounts of leakage, by boring analyses were found, reinforcement by compaction grouting system (CGS) has been conducted in some range of dam. Some geophysical data and data of geotechnical gauges were also used to confirm the effects of reinforcement. Electric resistivity, EM, GPR, ZHF, seismic refraction and seismic tomography surveys show that left side of dam is weak, which means the possibility of existence of gravel, rock block, water and cavities in the core of dam. This result coincides with the boring data. Especially, electric survey after reinforcement shows that even the right side of the dam has been deformed by the strong pressure during the reinforcement itself. As a conclusion, some problems in the dam found. Especially, the dam near spillway shows the high possibility of leakage. It should be pointed out that only the left side of he dam has not a leakage problem. As a whole, the dam has problems of weakness, because of unsatisfactory construction. It is strongly recommended that highly intensive monitoring is required.

  • PDF

Research on the anti-seismic performance of composite precast utility tunnels based on the shaking table test and simulation analysis

  • Yang, Yanmin;Li, Zigen;Li, Yongqing;Xu, Ran;Wang, Yunke
    • Computers and Concrete
    • /
    • v.27 no.2
    • /
    • pp.163-173
    • /
    • 2021
  • In this paper, the parameters of haunch height, reinforcement ratio and site condition were evaluated for the influence on the seismic performance of a composite precast fabricated utility tunnel by shaking table test and numerical simulation. The dynamic response laws of acceleration, interlayer displacement and steel strain under unidirectional horizontal seismic excitation were analyzed through four specimens with a similarity ratio of 1:6 in the test. And a numerical model was established and analyzed by the finite element software ABAQUS based on the structure of utility tunnel. The results indicated that composite precast fabricated utility tunnel with the good anti-seismic performance. In a certain range, increasing the height of haunch or the ratio of reinforcement could reduce the influence of seismic wave on the utility tunnel structure, which was beneficial to the structure earthquake resistance. The clay field containing the interlayer of liquefied sandy soil has a certain damping effect on the structure of the utility tunnel, and the displacement response could be reduced by 14.1%. Under the excitation of strong earthquake, the reinforcement strain at the side wall upper end and haunches of the utility tunnel was the biggest, which is the key part of the structure. The experimental results were in good agreement with the fitting results, and the results could provide a reference value for the anti-seismic design and application of composite precast fabricated utility tunnel.

Seismic Behavior of Deterioration Reservoir Embankment Using Dynamic Centrifugal Model Tests (동적원심모형실험에 의한 재개발 저수지의 동적 거동특성)

  • Park, Sung-Yong;Chang, Suk-Hyun;Lim, Hyun-Taek;Kim, Jung-Meyon;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.3
    • /
    • pp.91-100
    • /
    • 2016
  • Recently, lots of damages have been lost because large magnitude earthquakes were occurred in the world. It has been increased the number of earthquakes in Korea. It needs improvement required for the repair of deteriorated reservoirs, reinforcement and raised reservoir coping with climate change and earthquake. This study aims to investigate the seismic behavior of deterioration reservoir levee using dynamic centrifugal model test. Therefore, two case tests in centrifugal field of 60 g, the result has provided the influence on the acceleration response, displacement, settlement and the pore water pressure of the reservoir with earthquakes. From the results larger displacement and acceleration response at the front side of reservoir embankment with poor-fabricated core in seismic condition may degrade overall stability. Reasonable reinforcement method of the raised reservoir embankment is required for ensuring long-term stability on earthquake.

Conservation Scheme and Deterioration States of the Wanggung-ri Five-storied Stone Pagoda in the Iksan, Korea (익산 왕궁리 5층 석탑의 훼손현황과 보존방안 연구)

  • Yang, Hee-Jae;Lee, Chan-Hee;Kim, Sa-Dug;Choi, Seok-Won
    • 보존과학연구
    • /
    • s.25
    • /
    • pp.171-195
    • /
    • 2004
  • This research presents an evaluation of the weathering and deterioration state of the Wanggung-ri five-storied stone pagoda in the Iksan (National Treasure No. 289) and suggests conservational schemes. A deterioration map of the pagoda was drawn from the aspects of petrological, physical, chemical, biological, structural and artificial weathering.The rock properties consisting of the pagoda were medium-grained biotite granite that had leucocratic phenocryst developed in parts. The body of each story suffered severely from the secondary contamination that turned the colors into light grey, pitch dark, yellowish brown, and reddish brown as well as granular decomposition, exfoliation and peel-off. The roof stones were heavy exfoliated or peeled off in most of the cases. In addition to the fine cracks, there were layered cracks on the corners. The roof stones of the3rd and 4th story in the north and west side had some stones fall-off, while those of the 2ndstory in the north side had steel reinforcement filled for a fixing purpose. Those of the 5th story showed big gaps that must have originated from cracks and were easily subject to granular decomposition and rainfall. The inside clay filler was missing in the lower part of the roof stones of the 4th and 5th story and the supporting stones, which were thus covered by light grey or pitch dark sediments. The contact area of the materials was about 70 % in the parts where there was a space due to the filler missing and washigher than 90 % in the lower parts of the pagoda. About 90 % or more of the roof stones surface of each story were covered by aerial plants that formed a thick biological mat. Thus it seemed necessary to come up with the conservational measures to remove the plans living on the surface of the stone materials, with the plans to prevent rain from falling inside, and with the water repellent and hardening treatments to postpone the surface weathering of the rock properties. All those measures and plans must be based on the results of long-term monitoring and thorough detail investigations.

  • PDF