• 제목/요약/키워드: Water-Wall Tube

검색결과 155건 처리시간 0.028초

DETERMINISTIC EVALUATION OF DELAYED HYDRIDE CRACKING BEHAVIORS IN PHWR PRESSURE TUBES

  • Oh, Young-Jin;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • 제45권2호
    • /
    • pp.265-276
    • /
    • 2013
  • Pressure tubes made of Zr-2.5 wt% Nb alloy are important components consisting reactor coolant pressure boundary of a pressurized heavy water reactor, in which unanticipated through-wall cracks and rupture may occur due to a delayed hydride cracking (DHC). The Canadian Standards Association has provided deterministic and probabilistic structural integrity evaluation procedures to protect pressure tubes against DHC. However, intuitive understanding and subsequent assessment of flaw behaviors are still insufficient due to complex degradation mechanisms and diverse influential parameters of DHC compared with those of stress corrosion cracking and fatigue crack growth phenomena. In the present study, a deterministic flaw assessment program was developed and applied for systematic integrity assessment of the pressure tubes. Based on the examination results dealing with effects of flaw shapes, pressure tube dimensional changes, hydrogen concentrations of pressure tubes and plant operation scenarios, a simple and rough method for effective cooldown operation was proposed to minimize DHC risks. The developed deterministic assessment program for pressure tubes can be used to derive further technical bases for probabilistic damage frequency assessment.

석탄화력발전소 보일러의 수냉벽튜브 부식 메카니즘에 대한 실증적 고찰 (Empirical Study on water wall tube corrosion mechanism for Tangential type coal fired power plant boiler)

  • 백세현;김현희;박호영;고성호
    • 에너지공학
    • /
    • 제23권4호
    • /
    • pp.49-55
    • /
    • 2014
  • 석탄화력 발전소 보일러의 부식 메카니즘에 대한 실증적 고찰을 위하여 500MW 표준화력 발전소 보일러에 대한 보일러 튜브의 두께측정 및 수치해석을 병행하여 분석을 시행하였다. 그 결과 접선연소방식의 보일러 수냉벽 튜브의 부식에 가장 핵심적인 영향을 미치는 메카니즘은 퇴적된 미연탄소분에 포함된 유황분에 의한 부식이었으며, 두 번째 요소는 보일러 내부에서 국부적인 환원성 분위기가 생성되는 위치에서의 $H_2S$ 가스에 의한 부식으로 나타났다. 이와 같은 수냉벽튜브 부식을 완화시키기 위해서는 보일러의 다단연소 운전을 감소시키는 것이 필요하며, 미연분 감소를 위한 엄격한 미분도 관리 및 부식 취약부위에 대한 내부식 코팅보강 작업이 필요하다.

바이오가스용 소형 열교환기 연구 (Compact Heat Exchanger Design for Biogas Application)

  • 이택홍;김태완;박태성;강영진;노재현
    • 한국수소및신에너지학회논문집
    • /
    • 제25권2호
    • /
    • pp.183-190
    • /
    • 2014
  • Our lab designs a heat exchangers for air and carbondioxide gas. Coolant is water, thus it is very difficult to determine heat transfer parameters in this gas-liquid system. Repeated experiments gives overdesign value 35%, overall heat transfer coefficient $33.8(kcal/m2-hr-^{\circ}C)$ for carbondioxide. Another series of experiments determine overdesign 18.7%, overall heat transfer coefficient $21.4(kcal/m2-hr-^{\circ}C)$ for Air. These parameters are in same range of literature. Overdesign is increasing as tube length increases, also increases as wall thickness of heat exchanger increases. To get proper fluid linear velocity in heat exchanger, we change the diameter of tube and finally we can have optimum fluid linear velocity in the heat exchanger.

평편한 튜브의 입구 영역에서의 비회복사 (Non-gray Radiation in the Entrance Region of a Smooth Tube)

  • 서태범
    • 태양에너지
    • /
    • 제15권3호
    • /
    • pp.91-103
    • /
    • 1995
  • 튜브 내의 입구영역에서 대류와 비회복사(mon-gray radiation)가 동시에 일어날 때의 열전달 특성을 수치해석적으로 연구하였다. 작동유체는 이산화탄소, 수증기, 질소의 혼합가스라 하였고, 유동은 속도장과 온도장이 동시에 발달하는 층류 유동으로 가정하였다. 복사전달방정식을 풀기 편하게 하기 위해 P-1 근사법이 사용되었고 혼합가스의 비회흡수계수(non-gray sbsorption coefficient)는 지수광폭밴드모형(exponential wide band model)을 이용해서 구하였다. 열전달 특성에 대한 온도조건의 영향을 조사하기 위해 튜브의 축방향에 대한 평균온도와 뉴셀트수(Nusselt number)의 변화를 몇 가지 다른 온도조건에 대해 나타내었다. 속도장과 온도장이 동시에 발달하는 경우의 뉴셀트수를 속도장은 완전히 발달되어 있고 온도장만 발달하는 경우의 뉴셀트 수와 비교하였다. 또한, 가스의 성분조성이 대류와 비회복사 뉴셀트수에 미치는 영향을 조사하였다.

  • PDF

원형 미소 채널 내 드라이 플러그류의 유동 영역 한계와 압력 강하에 관한 실험적 연구 (An Experimental Study on Regime Limit and Pressure Drop of Dry-plug Flow in Round Mini-channels)

  • 이치영;이상용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2583-2588
    • /
    • 2008
  • In the present experimental study, the regime limit and pressure drop of dry-plug flow (dry wall condition at the gas portions of plug flow) in round mini-channels has been investigated. The air-water mixture was flowed through the round mini-channels made of Teflon, where the tube diameters ranged from 1.26 to 2.06 mm. For the present experimental range, with decreasing of the tube diameter, the transition between the plug and slug flows (wet and dry) happened at the higher gas superficial velocity region, which were in good agreement with the previous flow pattern maps tested. On the other hand, the transition between the wet- and dry-plug flows was little affected by the change of the tube diameter. In the pressure drop of dry-plug flows, among the correlations tested, the Lee and Lee's (2008) correlation best fitted the measured pressure drop data within the mean deviation of 10% for the present experimental range.

  • PDF

Numerical Predictions of Heat Transfer in the Fluidized Bed Heat Exchanger

  • Ahn, Soo-Whan
    • 농업생명과학연구
    • /
    • 제44권4호
    • /
    • pp.29-43
    • /
    • 2010
  • The numerical analysis by using CFX 11.0 commercial code was done for proper design of the heat exchanger. The present experimental studies were also conducted to investigate the effects of circulating solid particles on the characteristics of fluid flow, heat transfer and cleaning effect in the fluidized bed vertical shell and tube type heat exchanger with counterflow, at which a variety of solid particles such as glass ($3mm{\Phi}$), aluminum ($2{\sim}3mm{\Phi}$), steel ($2{\sim}2.5mm{\Phi}$), copper ($2.5mm{\Phi}$) and sand ($2{\sim}4mm{\Phi}$) were used in the fluidized bed with a smooth tube. Seven different solid particles have the same volume, and the effects of various parameters such as water flow rates, particle diameter, materials and geometry were investigated. The present experimental and numerical results showed that the flow velocity range for collision of particles to the tube wall was higher with heavier density solid particles, and the increase in heat transfer was in the order of sand, copper, steel, aluminum, and glass. This behavior might be attributed to the parameters such as surface roughness or particle heat capacity.

Impact response of ultra-high performance fiber-reinforced concrete filled square double-skin steel tubular columns

  • Li, Jie;Wang, Weiqiang;Wu, Chengqing;Liu, Zhongxian;Wu, Pengtao
    • Steel and Composite Structures
    • /
    • 제42권3호
    • /
    • pp.325-351
    • /
    • 2022
  • This paper studies the lateral impact behavior of ultra-high performance fiber-reinforced concrete (UHPFRC) filled double-skin steel tubular (UHPFRCFDST) columns. The impact force, midspan deflection, and strain histories were recorded. Based on the test results, the influences of drop height, axial load, concrete type, and steel tube wall thickness on the impact resistance of UHPFRCFDST members were analyzed. LS-DYNA software was used to establish a finite element (FE) model of UHPFRC filled steel tubular members. The failure modes and histories of impact force and midspan deflection of specimens were obtained. The simulation results were compared to the test results, which demonstrated the accuracy of the finite element analysis (FEA) model. Finally, the effects of the steel tube thickness, impact energy, type of concrete and impact indenter shape, and void ratio on the lateral impact performances of the UHPFRCFDST columns were analyzed.

스크린 메쉬형 가변전열 히트파이프에서 NCG양에 따른 작동특성 변화 (Influence of NCG Charging Mass on the Thermal Characteristics of Variable Conductance Heat Pipe with Screen Mesh Wick)

  • 서정세;박영식;강창호;정경택;박기호;이기우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1400-1405
    • /
    • 2004
  • Experimental study is performed to investigate the effect of heat load and operating temperature on the thermal performance of a heat pipe with screen mesh wick. The heat pipe was designed in 200 screen meshes, 500mm length and 12.7mm O.D tube of copper, water as working fluid(4.8g) and nitrogen as non-condensible gas(NCG). The heat pipe used in this study has evaporator, condenser and adiabatic section, respectively. Experimental data of axial wall temperature distribution is presented for heat transport capacity, the temperature of cooling water of condenser, inclination angle, and operating temperature. For the results from this study, it is found that, for the same charging mass of working fluid, the initial operating temperature and the overall wall temperatures of heat pipe are higher for NCG charging mass of $5.0{\times}10^{-6}kg$ and $3.4{\times}10^{-6}kg$, than that of $1.0{\times}10^{-6}kg$.

  • PDF

Chest Tube Drainage of the Pleural Space: A Concise Review for Pulmonologists

  • Porcel, Jose M.
    • Tuberculosis and Respiratory Diseases
    • /
    • 제81권2호
    • /
    • pp.106-115
    • /
    • 2018
  • Chest tube insertion is a common procedure usually done for the purpose of draining accumulated air or fluid in the pleural cavity. Small-bore chest tubes (${\leq}14F$) are generally recommended as the first-line therapy for spontaneous pneumothorax in non-ventilated patients and pleural effusions in general, with the possible exception of hemothoraces and malignant effusions (for which an immediate pleurodesis is planned). Large-bore chest drains may be useful for very large air leaks, as well as post-ineffective trial with small-bore drains. Chest tube insertion should be guided by imaging, either bedside ultrasonography or, less commonly, computed tomography. The so-called trocar technique must be avoided. Instead, blunt dissection (for tubes >24F) or the Seldinger technique should be used. All chest tubes are connected to a drainage system device: flutter valve, underwater seal, electronic systems or, for indwelling pleural catheters (IPC), vacuum bottles. The classic, three-bottle drainage system requires either (external) wall suction or gravity ("water seal") drainage (the former not being routinely recommended unless the latter is not effective). The optimal timing for tube removal is still a matter of controversy; however, the use of digital drainage systems facilitates informed and prudent decision-making in that area. A drain-clamping test before tube withdrawal is generally not advocated. Pain, drain blockage and accidental dislodgment are common complications of small-bore drains; the most dreaded complications include organ injury, hemothorax, infections, and re-expansion pulmonary edema. IPC represent a first-line palliative therapy of malignant pleural effusions in many centers. The optimal frequency of drainage, for IPC, has not been formally agreed upon or otherwise officially established.

이중 분지관내 혈액 및 혈액대용유체의 3차원 유동해석 (3-D Flow Analysis of Blood and Blood Substitutes in a Double Branching Model)

  • 서상호;유상신;노형운
    • 대한의용생체공학회:의공학회지
    • /
    • 제18권2호
    • /
    • pp.187-196
    • /
    • 1997
  • The three-dimensional flow analysis using the finite volume method is presented to compare the steady flow characteristics of blood with those of blood substitutes such as water and aqueous polymer solution in an idealized double branching model. The model is used to simlllate the region of the abdominal aorta near the celiac and superior mesenteric branches. Apparent viscosities of blood and the aqueous Separan solution are represented as a function of shear rate by the Carreau model, Water and aqueoiu Separan AP-273 500wppm solution are frequently used as blood substitutes in vitro experiments. Water is a typical Newtonian fluid and blood and Separan solution are non-Newtonian fluids. Flow phenomena such as velocity distribution, pressure variation and wall shear stress distribution of water, blood and polymer solution are quite different due to differences of the rheological characteristics of fluids. Flow phenomena of polymer solution are qualitatively similar to those of blood but the phenomena of water are quite different from those of blood and polymer solution. It is recommended that a lion-Newtonian fluid which exhibits very similar rheological behavior to blood be used in vitro experiments. A non-Newtonian fluid whose rheological characteristics are very similar to those of blood should be used to obtain the meaninylll hemodynamic data for blood flow in vitro experiment and by numerical analysis

  • PDF