Browse > Article
http://dx.doi.org/10.12989/scs.2022.42.3.325

Impact response of ultra-high performance fiber-reinforced concrete filled square double-skin steel tubular columns  

Li, Jie (Tianjin Key Laboratory of Civil Structure Protection and Reinforcement, Tianjin Chengjian University)
Wang, Weiqiang (College of Water Conservancy and Hydropower Engineering, Hohai University)
Wu, Chengqing (School of Civil and Environmental Engineering, University of Technology Sydney)
Liu, Zhongxian (Tianjin Key Laboratory of Civil Structure Protection and Reinforcement, Tianjin Chengjian University)
Wu, Pengtao (Tianjin Key Laboratory of Civil Structure Protection and Reinforcement, Tianjin Chengjian University)
Publication Information
Steel and Composite Structures / v.42, no.3, 2022 , pp. 325-351 More about this Journal
Abstract
This paper studies the lateral impact behavior of ultra-high performance fiber-reinforced concrete (UHPFRC) filled double-skin steel tubular (UHPFRCFDST) columns. The impact force, midspan deflection, and strain histories were recorded. Based on the test results, the influences of drop height, axial load, concrete type, and steel tube wall thickness on the impact resistance of UHPFRCFDST members were analyzed. LS-DYNA software was used to establish a finite element (FE) model of UHPFRC filled steel tubular members. The failure modes and histories of impact force and midspan deflection of specimens were obtained. The simulation results were compared to the test results, which demonstrated the accuracy of the finite element analysis (FEA) model. Finally, the effects of the steel tube thickness, impact energy, type of concrete and impact indenter shape, and void ratio on the lateral impact performances of the UHPFRCFDST columns were analyzed.
Keywords
drop hammer; Finite Element Analysis (FEA); steel tube; ultra-high performance fiber-reinforced concrete;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Mao, L., Barnett, S., Begg, D., Schleyer, G. and Wight, G. (2014), "Numerical simulation of ultra high performance fibre reinforced concrete panel subjected to blast loading", Int. J. Impact Eng., 64(64), 91-100. https://doi.org/10.1016/j.ijimpeng.2013.10.003.   DOI
2 Wang, W., Wu, C. and Liu, Z. (2019c), "Compressive behavior of hybrid double-skin tubular columns with ultrahigh performance fiber-reinforced concrete", Eng. Struct., 180, 419-441. https://doi.org/10.1016/j.engstruct.2018.11.048.   DOI
3 Guler, S., Copur, A. and Aydogan, M. (2013), "Axial capacity and ductility of circular UHPC-filled steel tube columns", Mag. Concrete Res., 65(15), 898-905. https://doi.org/10.1680/macr.12.00211.   DOI
4 Pham, T.M., Hao, Y. and Hao, H. (2018), "Sensitivity of impact behavior of RC beams to contact stiffness", Int. J. Impact Eng., 112, 155-164. https://doi.org/10.1016/j.ijimpeng.2017.09.015.   DOI
5 Shekastehband, B., Mohammadbagheri, S. and Taromi, A. (2018), "Seismic behavior of stiffened concrete-filled double-skin tubular columns", Steel Compos. Struct., 27(5), 577-598. https://doi.org/10.12989/scs.2018.27.5.577.   DOI
6 Wang, G., Zhang, S., Kong, Y. and Li, H. (2015), "Comparative study of the dynamic response of concrete gravity dams subjected to underwater and air explosions", J. Perform. Construct. Facil., 29, 04014092. https://doi.org/10.1061/(asce)cf.1943-5509.0000589.   DOI
7 Weinberg, K. and Khosravani, M.R. (2018), "On the tensile resistance of UHPC at impact", Europ. Phys. J. Spec. Topics, 227(1-2), 167-177. https://doi.org/10.1140/epjst/e2018-00057-1.   DOI
8 Wang, W., Martin, P.R., Sheikh, M.N. and Hadi, M.N.S. (2018a), "Eccentrically loaded FRP confined concrete with different wrapping schemes", J. Compos. Construct., 22(6). https://doi.org/10.1061/(asce)cc.1943-5614.0000898.   DOI
9 Abdelkarim, O.I. and Elgawady, M.A. (2016), "Performance of hollow-core FRP-concrete-steel bridge columns subjected to vehicle collision", Eng. Struct., 123, 517-531. https://doi.org/10.1016/j.engstruct.2016.05.048.   DOI
10 Wei, J., Li, J. and Wu, C. (2019), "An experimental and numerical study of reinforced conventional concrete and ultra-high performance concrete columns under lateral impact loads", Eng. Struct., 201, 109822. https://doi.org/10.1016/j.engstruct.2019.109822.   DOI
11 Wille, K., El-Tawil, S. and Naaman, A.E. (2014), "Properties of strain hardening ultra high performance fiber reinforced concrete (UHPFRC) under direct tensile loading", Cement Concrete Compos., 48, 53-66. https://doi.org/10.1016/j.cemconcomp.2013.12.015.   DOI
12 Xu, L., Lu, Q., Chi, Y., Yang, Y., Yu, M. and Yan, Y. (2019), "Axial compressive performance of UHPC filled steel tube stub columns containing steel-polypropylene hybrid fiber", Construct. Build. Mater., 204, 754-767. https://doi.org/10.1016/j.conbuildmat.2019.01.202.   DOI
13 Yoo, D.Y. and Banthia, N. (2016), "Mechanical properties of ultrahigh-performance fiber-reinforced concrete: A review", Cement Concrete Compos., 73, 267-280. https://doi.org/10.1016/j.cemconcomp.2016.08.001.   DOI
14 Zhao, H., Wang R., Hou C.C. and Lam, D. (2019), "Performance of circular CFDST members with external stainless steel tube under transverse impact loading", Thin-Walled Struct., 145, 106380. https://doi.org/10.1016/j.tws.2019.106380.   DOI
15 Chen, W.F. (2007), Plasticity in Reinforced Concrete, J Ross Publishing.
16 Aghdamy, S., Thambiratnam, D.P., Dhanasekar, M. and Saiedi, S. (2016), "Effects of structure-related parameters on the response of concrete-filled double-skin steel tube columns to lateral impact", Thin-Walled Struct., 108, 351-368. https://doi.org/10.1016/j.tws.2016.08.009.   DOI
17 Association Francaise de Genie Civil (2013), Ultra High Performance Fibre-Reinforced Concretes: Recommendations.
18 Bruhwiler, E. (2019), "UHPFRC technology to enhance the performance of existing concrete bridges", Struct. Infrastruct. Eng., 16(1), 94-105. https://doi.org/10.1080/15732479.2019.1605395.   DOI
19 Fujikake, K., Senga, T. and Ueda, N., Ohno, T., Katagiri, M. (2006), "Effects of strain rate on tensile behavior of reactive powder concrete", J. Advan. Concrete Technol., 4(1), 79-84. https://doi.org/10.3151/jact.4.79.   DOI
20 GB 50936 (2014), Technical Code for Concrete Filled Steel Tube Structures, State Administration for Market Regulation, CN-GB.
21 Gou, H., Long, H., Bao, Y., Chen, G. and Pu, Q. (2019), "Dynamic behavior of hybrid framed arch railway bridge under moving trains", Struct. Infrastruct. Eng., 15(8), 1015-1024. https://doi.org/10.1080/15732479.2019.1594314.   DOI
22 Nie, J., Wang, Y. and Fan, J. (2012), "Experimental study on concrete filled steel tubular columns under combined compression, flexure and torsion", J. Build. Struct., 33, 1-11.
23 Wei, J., Li, J. and Wu, C. and Liu, Z (2021), "Impact resistance of ultra-high performance concrete strengthened reinforced concrete beams", Int. J. Impact Eng., 158, 104023. https://doi.org/10.1016/j.ijimpeng.2021.104023.   DOI
24 Wu, Y., Crawford, J.E. and Magallanes, J.M. (2012), Performance of LS-DYNA Concrete Constitutive Model, 12th International LS-DYNA Users Conference, 3-5.
25 Wang, W., Wu, C., Li, J., Liu, Z. and Lv, Y. (2019a), "Behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) filled steel tubular members under lateral impact loading", Int. J. Impact Eng., 132, 103314.1-103314.24. https://doi.org/10.1016/j.ijimpeng.2019.103314.   DOI
26 Fossum, A.F. and Fredrich, J.T. (2000), Cap Plasticity Models and Compactive and Dilatant Pre-Failure Deformation, 4th North American Rock Mechanics Symposium, Seattle, WA (US), 07/31/2000-08/03/2000, 2000.
27 Ding, X.M., Fan, Y.M., Kong, G.Q. and Zheng, C.J. (2014), "Wave propagation in a concrete filled steel tubular column due to transient impact load", Steel Compos. Struct., 17(6), 891-906. https://doi.org/10.12989/scs.2014.17.6.891.   DOI
28 Li, W., Luo, Z., Wu, C. and Duan, W.H. (2018), "Impact performances of steel tube-confined recycled aggregate concrete (STCRAC) after exposure to elevated temperatures", Cement Concrete Compos., 86, 87-97. https://doi.org/10.1016/j.cemconcomp.2017.11.009.   DOI
29 Yoo, D.Y., Shin, H.O., Yang, J.M. and Yoon, Y.S. (2014), "Material and bond properties of ultra high performance fiber reinforced concrete with micro steel fibers", Compos. Part B: Eng., 58, 122-133. https://doi.org/10.1016/j.compositesb.2013.10.081.   DOI
30 Murray, Y.D. (2007), Users Manual for LS-DYNA Concrete Material Model 159.
31 Pyo, S., Wille, K., El-Tawil, S. and Naaman, A.E. (2015), "Strain rate dependent properties of ultra high performance fiber reinforced concrete (UHP-FRC) under tension", Cement Concrete Compos., 56, 15-24. https://doi.org/10.1016/j.cemconcomp.2014.10.002.   DOI
32 Rong, Z., Sun, W. and Zhang, Y. (2010), "Dynamic compression behavior of ultra-high performance cement based composites", Int. J. Impact Eng., 37(5), 515-520. https://doi.org/10.1016/j.ijimpeng.2009.11.005.   DOI
33 Guo, R., Zhang, R.B., Zhao, J.Y., Zhou, J.S. and Zhang, Z.M. (2018), "Reliability evaluation of bladder accumulator with no failure data", High Technol. Lett., 24(3), 322-329. http://dx.doi.org/10.3772/j.issn.1006-6748.2018.03.013.   DOI
34 Ahmad, S., Rasul, M., Adekunle, S.K., Al-Dulaijan, S.U., Maslehuddin, M. and Ali, S.I. (2019), "Mechanical properties of steel fiber-reinforced UHPC mixtures exposed to elevated temperature: effects of exposure duration and fiber content", Compos. Part B: Eng., 168, 291-301. https://doi.org/10.1016/j.compositesb.2018.12.083.   DOI
35 Su, Y., Li, J., Wu, C., Wu, P. and Li, Z.X. (2016), "Influences of nano-particles on dynamic strength of ultra-high performance concrete", Compos. Part B: Eng., 91, 595-609. https://doi.org/10.1016/j.compositesb.2016.01.044.   DOI
36 Tran, N.T., Tran, T.K. and Kim, D.J. (2015), "High rate response of ultra-high-performance fiber-reinforced concretes under direct tension", Cement Concrete Res., 69, 72-87. https://doi.org/10.1016/j.cemconres.2014.12.008.   DOI
37 Wang, R., Han, L.-H., Zhao, X.L. and Rasmussen, K.J.R. (2016), "Analytical behavior of concrete filled double steel tubular (CFDST) members under lateral impact", Thin-Walled Struct., 101, 129-140. https://doi.org/10.1016/j.tws.2015.12.006.   DOI
38 Wang, W., Wu, C. and Li, J. (2018b), "Numerical simulation of hybrid FRP-concrete-steel double-skin tubular columns under close-range blast loading", J. Compos. Construct., 22(5). https://doi.org/10.1061/(asce)cc.1943-5614.0000871.   DOI
39 Cao, G., Li, Z. and Xu, Z. (2019), "A SPH simulation method for opening flow of fresh concrete considering boundary restraint", Construct. Build. Mater., 198, 379-389. https://doi.org/10.1016/j.conbuildmat.2018.11.247.   DOI
40 GB/T 31387 (2015), Reactive Powder Concrete, State Administration for Market Regulation, CN-GB.
41 Wang, W., Wu, C., Li, J., Liu, Z. and Zhi, X. (2019b), "Lateral impact behavior of double-skin steel tubular (DST) members with ultra-high performance fiber-reinforced concrete (UHPFRC)", Thin-Walled Struct., 144. https://doi.org/10.1016/j.tws.2019.106351.   DOI
42 Hassan, A.M.T., Jones, S.W. and Mahmud, G.H. (2012), "Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC)", Construct. Build. Mater., 37(1), 874-882. https://doi.org/10.1016/j.conbuildmat.2012.04.030.   DOI
43 Huang, H., Gao, X., Li, L. and Wang, H. (2018), "Improvement effect of steel fiber orientation control on mechanical performance of UHPC", Construct. Build. Mater., 188, 709-721. https://doi.org/10.1016/j.conbuildmat.2018.08.146.   DOI
44 Wang, R., Han, L.H. and Hou, C.C. (2013), "Behavior of concrete filled steel tubular (CFST) members under lateral impact: experiment and FEA model", J. Construct. Steel Res., 80, 188-201. https://doi.org/10.1016/j.jcsr.2012.09.003.   DOI
45 Li, S.C., Lu, W., Wang, Q., Sun, H.B., Jiang, B. and Qin, Q. (2018), "Study on failure mechanism and mechanical properties of casing joints of square steel confined concrete arch", Eng. Fail. Anal., 92, 539-552. https://doi.org/10.1016/j.engfailanal.2018.05.011.   DOI
46 Huang, H., Gao, X. and Zhang, A. (2019), "Numerical simulation and visualization of motion and orientation of steel fibers in UHPC under controlling flow condition", Construct. Build. Mater., 199, 624-636. https://doi.org/10.1016/j.conbuildmat.2018.12.055.   DOI
47 Guo, W., Fan, W., Shao, X., Shen, D. and Chen, B. (2018), "Constitutive model of ultra-high-performance fiber-reinforced concrete for low-velocity impact simulations", Compos. Struct., 185, 307-326. https://doi.org/10.1016/j.compstruct.2017.11.022.   DOI
48 Li, J., Wu, C. and Hao, H. (2015), "An experimental and numerical study of reinforced ultra-high performance concrete slabs under blast loads", Mater. Des., 82, 64-76. https://doi.org/10.1016/j.matdes.2015.05.045.   DOI
49 LSTC. (2014), LS-DYNA Keyword User's Manual, Livermore Software Technology Corporation (LSTC).
50 Miskiewicz, M., Bruski, D., Chroscielewski, J. and Wilde, K. (2019), "Safety assessment of a concrete viaduct damaged by vehicle impact and an evaluation of the repair", Eng. Fail. Anal., 106, 104147. https://doi.org/10.1016/j.engfailanal.2019.104147.   DOI
51 Huang, Z., Huang, X., Li, W. and Zhang, J. (2020), "Compressive resistance behavior of UHPFRC encased steel composite stub column", Steel Compos. Struct., 37(2), 211-227. https://doi.org/10.12989/scs.2020.37.2.211.   DOI
52 Japan Society of Civil Engineers (2006), Recommendations for Design and Construction of Ultra High Strength Fiber Reinforced Concrete Structures (Draft).
53 Jiang, H. and Chorzepa, M.G. (2015), "An effective numerical simulation methodology to predict the impact response of prestressed concrete members", Eng. Fail. Anal., 55, 63-78. https://doi.org/10.1016/j.engfailanal.2015.05.006.   DOI
54 Kang, S.T., Choi, J.I., Koh, K.T., Lee, K.S. and Lee, B.Y. (2016), "Hybrid effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete", Compos. Struct., 145, 37-42. https://doi.org/10.1016/j.compstruct.2016.02.075.   DOI
55 Kim, D.J., Park, S.H., Ryu, G.S. and Koh, K.T. (2011), "Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers", Construct. Build. Mater., 25(11), 4144-4155. https://doi.org/10.1016/j.conbuildmat.2011.04.051.   DOI
56 Mao, L. and Barnett, S.J. (2017), "Investigation of toughness of ultra high performance fibre reinforced concrete (UHPFRC) beam under impact loading", Int. J. Impact Eng., 99, 26-38. https://doi.org/10.1016/j.ijimpeng.2016.09.014.   DOI