• 제목/요약/키워드: Water-Binder Ratio

검색결과 489건 처리시간 0.023초

Effect of temperature on the behavior of self-compacting concretes and their durability

  • Salhi, M.;Li, A.;Ghrici, M.;Bliard, C.
    • Advances in concrete construction
    • /
    • 제7권4호
    • /
    • pp.277-288
    • /
    • 2019
  • The formulation of self-compacting concretes (SCC) and the study of their properties at the laboratory level were currently well mastered. The aim of this work is to characterize SCC under hot climatic conditions and their effects on the properties of fresh and hardened SCC. Particularly, the effect of the initial wet curing time on the mechanical behavior such as the compressive strength and the durability of the SCCs (acid and sulfate attack) as well as the microstructure of SCCs mixtures. In this study, we used two types of cement, Portland cement and slag cement, three water/binder (W/B) ratio (0.32, 0.38 and 0.44) and five curing modes. The obtained results shows that the compressive strength is strongly influenced by the curing methods, 7-days of curing in the water and then followed by a maturing in a hot climate was the optimal duration for the development of a better compressive strength, regardless of the type of binder and the W/B ratio.

다양한 물-결합재비를 갖는 모르타르의 물성에 대한 파쇄 바텀애시의 영향 (Effects of Crushed Coal Bottom Ash on the Properties of Mortar with Various Water-to-binder Ratios)

  • 밀리언 타페세;김형기
    • 자원리싸이클링
    • /
    • 제25권6호
    • /
    • pp.29-40
    • /
    • 2016
  • 최대 입경 1 mm 이하의 파쇄 바텀애시 혼입이 다양한 물-결합재비를 갖는 모르타르의 성능에 미치는 영향 확인하였다. 이는 파쇄 바텀애시를 혼입한 모르타르 및 콘크리트의 배합설계기법을 성립하기 위한 기초연구로서 수행된 것이다. 모르타르의 유동성 및 공기량, 압축강도가 측정되었다. 배합설계기준인 28일 압축강도를 기반으로 CEN/TR 16637에서 제안한 등가압축강도 개념을 고려하여 파쇄 바텀애시의 강도기여 효율을 평가하였다. 실험결과, 파쇄 바텀애시가 우수한 결합재로서의 역할을 하는 경우도 있는 반면, 골재에 가까운 역할을 하는 경우도 있음을 확인하였다. 파쇄 바텀애시의 효율은 바텀애시의 종류 및 치환률, 모르타르의 w/의 변화에 따라 달라진다.

투수시트를 적용하여 잉여수를 탈수한 콘크리트의 강도 특성 (Characteristics of Excess Water Dewatered Concrete Using Permeable Liner)

  • 전규남;안기홍;이종석
    • 콘크리트학회논문집
    • /
    • 제25권6호
    • /
    • pp.675-682
    • /
    • 2013
  • 이 연구에서는 콘크리트 타설 시 발생하는 잉여수를 제거하여 피복 콘크리트의 성능을 향상 시키고자 거푸집에 구멍을 뚫지 않은 일반 유로폼에 투수시트를 부착하여 타설한 콘크리트의 물-결합재비 종류 및 시험체 높이에 따른 강도 특성을 분석하였다. 슈미트해머 반발경도 및 압축강도의 경우 투수시트면이 물-결합재비가 높은 배합일수록 크게 나타났으며, 시험체의 높이에 따라서는 상부보다는 중부 및 하부에서 크게 나타남을 알 수 있었다. SEM 분석 결과의 경우 수화물의 생성형태는 유사하였으나 투수시트면이 일반면에 비해 공극이 확연히 감소되고 밀실해 지는 것으로 나타났으며, MIP 분석 결과 투수시트를 사용하였을 경우 $0.01{\mu}m$ 이하 공극량이 최대 50%까지 감소되어 공극이 치밀해지는 것으로 나타났다.

굳지않은 포러스콘크리트의 품질관리를 위한 실험적 연구 (An Experimental Study on the Quality Control of Fresh Porous Concrete)

  • 이성일;장종호;김재환;강석표;백용관;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.705-710
    • /
    • 2002
  • Recently, there has been for a number of reasons growing interest in the use of porous concrete, and it is used as an ecological material. But, because the valuation methods of the quality on the fresh porous concrete aren't established up till now, it is difficult that the harden porous concrete is made sure of its required quality. This study is to present the measurement method of the void ratio on the fresh porous concrete and to analyze the influence of water-cement ratio and vibrating time on the binder content covered a coarse aggregate. Results of this study were shown as follows; The measurement methods of the void ratio and aggregate-binder weight ratio on the fresh porous concrete can be useful as data for the quality control of fresh porous concrete.

  • PDF

가네트를 활용한 고강도 콘크리트의 건조수축 특성 연구 (A Study on Drying Shrinkage of the High-Strength Concrete using the Garnet)

  • 장주영;윤요현;박정민;김화중
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.676-679
    • /
    • 2004
  • In this study, we considered the characteristic of drying shrinkage from age of high strength concrete with garnet minute powder to be industry by-product. The factors of experiment are unit water content$(160kg/m^3)$, water-binder ratio(30, $35\%$), fine aggregate ratio(40, 42, $44\%$), admixture replacement ratio(0, 10, $20\%$), admixture type(garnet minute powder, fly ash, blast-furnace slag). We make a comparative study of shrinkage about concrete with a passage of age(1, 3, 7, 14, 28, 56, 91 days). As a result of experiment, we reach a conclusion as follow. In the same mix condition, as unit water content and fine aggregate ratio go up, the drying shrinkage ratio increase. In the drying shrinkage ratio according to admixture replacement ratio, it goes up when admixture replacement Ratio increase in case of fly ash and blast-furnace slag. But, drying shrinkage ratio decrease when admixture replacement ratio increase in case of garnet minute powder.

  • PDF

Characterization of alkali activated geopolymer mortar doped with MWCNT

  • Khater, H.M.;Abd el Gawaad, H.A.
    • Advances in materials Research
    • /
    • 제4권1호
    • /
    • pp.45-60
    • /
    • 2015
  • This paper aimed to investigate the effect of MWCNTs on properties of slag Geopolymeric mortar. Geopolymeric matrices containing different MWCNTs concentrations (0.0, 0.1, 0.2, 0.3 and 0.4 % by weight of the used binder) were synthesized. The Geopolymer mortar composed of aluminosilicate slag to sand (1:2), while the alumino silicate source binder composed of 50% air cooled slag and 50%water cooled slag both passing a sieve of $90{\mu}m$, while the sand passing a sieve of 1 ml. The materials prepared at water/binder ratios in a range of 0.34-0.39% depending on the added MWCNT, whereas the Gelenium Ace-30 superplasticizer used in the ratio of 1.4-2.2% from the total dry weight for better dispersion of MWCNT under sonication for 15 min. Alkaline activation of the Geopolymer mortar was carried by using of 6% NaOH. Curing was performed under temperature of $40^{\circ}C$ and 100% R.H. Results showed that the addition of MWCNTs enhanced the resulting amorphous geopolymer structure with marked decrease in the drying shrinkage as well as water absorption specially when using 0.1% MWCNT, while further increase in MWCNTs results in agglomeration in MWCNT within the matrix and so hinder the propagation of Geopolymerization reaction and negatively affect the formed geopolymer structure.

Soil stabilization by ground bottom ash and red mud

  • Kim, Youngsang;Dang, My Quoc;Do, Tan Manh;Lee, Joon Kyu
    • Geomechanics and Engineering
    • /
    • 제16권1호
    • /
    • pp.105-112
    • /
    • 2018
  • This paper presents results of a compressive investigation conducted on weathered soil stabilized with ground bottom ash (GBA) and red mud (RM). The effects of water/binder ratio, RM/GBA ratio, chemical activator (NaOH and $Na_2SiO_3$) and curing time on unconfined compressive strength of stabilized soils were examined. The results show that the water/binder ratio of 1.2 is optimum ratio at which the stabilized soils have the maximum compressive strength. For 28 days of curing, the compressive strength of soils stabilized with alkali-activated GBA and RM varies between 1.5 MPa and 4.1 MPa. The addition of GBA, RM and chemical activators enhanced strength development and the rate of strength improvement was more significant at the later age than at the early age. The potential environmental impacts of stabilized soils were also assessed. The chemical property changes of leachate from stabilized soils were analyzed in terms of pH and concentrations of hazardous elements. The observation revealed that the soil mixture with ground bottom ash and red mud proved environmentally safe.

Pull-Out Behaviour of Hooked End Steel Fibres Embedded in Ultra-high Performance Mortar with Various W/B Ratios

  • Abdallah, Sadoon;Fan, Mizi;Zhou, Xiangming
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.301-313
    • /
    • 2017
  • This paper presents the fibre-matrix interfacial properties of hooked end steel fibres embedded in ultra-high performance mortars with various water/binder (W/B) ratios. The principle objective was to improve bond behaviour in terms of bond strength by reducing the (W/B) ratio to a minimum. Results show that a decrease in W/B ratio has a significant effect on the bond-slip behaviour of both types of 3D fibres, especially when the W/B ratio was reduced from 0.25 to 0.15. Furthermore, the optimization in maximizing pullout load and total pullout work is found to be more prominent for the 3D fibres with a larger diameter than for fibres with a smaller diameter. On the contrary, increasing the embedded length of the 3D fibres did not result in an improvement on the maximum pullout load, but increase in the total pullout work.

초기 양생조건에 따른 콘크리트의 건조수축 특성 (Influence of Curing Condition on Drying Shrinkage of Concrete)

  • 하재담;김태홍;유재상;이종열;배수호;권영호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.277-280
    • /
    • 2003
  • Material, mix proportion, curing condition, temperature, humidity and wind velocity have an influence on drying shrinkage of concrete. In this paper, to evaluate the effect of curing condition at early age on the drying shrinkage of concrete was investigated varying curing age for different binder. The principal conclusions from this research were as follows: 1) In case of 14 days of water curing, the drying shrinkage of concrete is smaller than 7 days of water curing, independence of type of binder. 2) In case of 4 days of water curing, the ratio of increase of drying shrinkage of concrete using fly-ash and slag powder is more remarkable than using portland cement alone, comparing the drying shrinkage of 7 days of water curing.

  • PDF

Using Carboxylmethylated Cellulose as Water-Borne Binder to Enhance the Electrochemical Properties of Li4Ti5O12-Based Anodes

  • Liu, Lili;Cheng, Chongling;Liu, Hongjiang;Shi, Liyi;Wang, Dayang
    • 한국분말재료학회지
    • /
    • 제22권5호
    • /
    • pp.315-320
    • /
    • 2015
  • The present work reports a systematic study of using carboxymethylated cellulose (CMC) as water-borne binder to produce $Li_4Ti_5O_{12}$-based anodes for manufacture of high rate performance lithium ion batteries. When the LTO-to-CB-to-CMC mass ratio is carefully optimized to be 8:1:0.57, the special capacity of the resulting electrodes is $144mAh{\cdot}g^{-1}$ at 10 C and their capacity retention was 97.7% after 1000 cycles at 1 C and 98.5% after 500 cycles at 5 C, respectively. This rate performance is comparable or even better than that of the electrolytes produced using conventional, organic, polyvinylidene fluoride binder.