Browse > Article
http://dx.doi.org/10.12989/amr.2015.4.1.45

Characterization of alkali activated geopolymer mortar doped with MWCNT  

Khater, H.M. (Housing and building national research center)
Abd el Gawaad, H.A. (Housing and building national research center)
Publication Information
Advances in materials Research / v.4, no.1, 2015 , pp. 45-60 More about this Journal
Abstract
This paper aimed to investigate the effect of MWCNTs on properties of slag Geopolymeric mortar. Geopolymeric matrices containing different MWCNTs concentrations (0.0, 0.1, 0.2, 0.3 and 0.4 % by weight of the used binder) were synthesized. The Geopolymer mortar composed of aluminosilicate slag to sand (1:2), while the alumino silicate source binder composed of 50% air cooled slag and 50%water cooled slag both passing a sieve of $90{\mu}m$, while the sand passing a sieve of 1 ml. The materials prepared at water/binder ratios in a range of 0.34-0.39% depending on the added MWCNT, whereas the Gelenium Ace-30 superplasticizer used in the ratio of 1.4-2.2% from the total dry weight for better dispersion of MWCNT under sonication for 15 min. Alkaline activation of the Geopolymer mortar was carried by using of 6% NaOH. Curing was performed under temperature of $40^{\circ}C$ and 100% R.H. Results showed that the addition of MWCNTs enhanced the resulting amorphous geopolymer structure with marked decrease in the drying shrinkage as well as water absorption specially when using 0.1% MWCNT, while further increase in MWCNTs results in agglomeration in MWCNT within the matrix and so hinder the propagation of Geopolymerization reaction and negatively affect the formed geopolymer structure.
Keywords
MWCNT; Geopolymer; mortar; water cooled slag; air cooled slag;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abu-Al-Rub, R.K., Tyson, B.M., Yazdanbakhsh, A. and Grasley, Z. (2012), "Mechanical properties of nanocomposite cement incorporating surface-treated and untreated carbon nanotubes and carbon nanofibres", ASCE J Nanomech Micromech, 2(1), 1-6.   DOI
2 Aglan, H.; Morsy, M., Allie, A. and Fouad, F. (2009), "Evaluation of fiber reinforced nanostructured Perlite-cementitious surface compound for building skin applications", Constr. Build. Mater., 23, 138-145.   DOI
3 Alexandre Silva de Vargas; Denise.C.C. Dal Molin; A ngela.B. Masuero; Antonio.C.F. Vilela; Joao Castro-Gomes; Ruby M. Gutierrez (2014), "Strength development of alkali-activated fly ash produced with combined NAOH and CA(OH)2 activators", Cement Concrete Compos., 53, 341-349.   DOI
4 Ando, Y. (1994), "the preparation of carbon nanotubes", Full Sci Technol., 173-180.
5 Andrews, R., Jacques, D., Qian, D. and Dickey, E.C. (2001), Carbon, 39, 1681-1687.   DOI
6 ASTM C109M-12 (2012), "Standard test method for compressive strength of hydraulic cement mortars".
7 ASTM C140-01, "Standard test methods for sampling and testing concrete masonry units and related units",(2001).
8 Bakharev T. (2004), "Resistance of geopolymer materials to acid attack", Cement Concrete Res., 35(4), 658-670.   DOI
9 Bakharev, T., Sanjayan, J.G. and Cheng, Y.B. (1999), "Effect of elevated temperature curing on properties of alkali-activated slag concrete", Cement Concrete Res., 29, 1619-1625.   DOI   ScienceOn
10 Ben Haha, M.; Le Saout, G. l; Winnefeld, F. and Lothenbach, B. (2011), "Influence of Activator Type on Hydration Kinetics, Hydrate Assemblage and Microstructural Development of Alkali Activated Blast-Furnace Slags", Cement Concrete Res., 41(3), 301-310.   DOI
11 Ben Haha, M., Lothenbach, B., Le Saout, G.l. and Winnefeld, F. (2011), "Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part I: Effect of MgO", Cement Concrete Res., 41(9), 955-963.   DOI
12 Chen, S.J., Collins, F.G., Macleod, A.J.N., Pan Z., Duan, W.H. and Wang, C.M. (2011), "Carbon nanotube-cement: a retrospect", ISE J. Part A: Civil Struct. Eng., 4(4), 254-265.   DOI
13 Coleman, N.J., Khan, U., Blau, W.J. and Gun-ko, Y.K. (2006), "Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites", Carbon, 44(9), 1624-1652.   DOI
14 Collins, F., Lambert, F. and Duan, W.H. (2012), "The influence of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures", Cement Concrete Compos., 34(9), 1067-1074.   DOI
15 Collins, F., Lambert, F. and Duan, W.H. (2012), "The influence of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures", Cement Concrete Compos., 34(9), 1067-1074.   DOI
16 Duxson, P.; Provis, J.L., Lukey, G.C., van Deventer, J.S.J., Separovic, F. and Gan, Z.H. (2006), "39K NMR of Free Potassium in Geopolymers", Ind. Eng. Chem. Res., 45(26), 9208-9210.   DOI
17 Gao, D., Sturm, M. and Mo, Y.L. (2009), "Electrical resistance of carbon-nanofibre concrete", Smart Mater Struct., 18(9), 1-7.
18 El-Sayed, H.A.; Abo El-Enein, S.A.; Khater, H.M. and Hasanein, S.A. (2011), "Resistance of alkali activated water cooled slag geopolymer to sulfate attack", Ceramics - Silikaty, 55, 153-160.
19 Fernandez-Diaz, L., Fernandez-Gonzalez, A . and Prieto, M. (2010), "The role of sulfate groups in controlling CaCO3 polymorphism", Geochim Cosmochim Acta, 74(2), 6064-6076.   DOI
20 Fu, K., Huang, W. and Lin, Y. (2001), "Defunctionalization of functionalized carbon nanotubes", Nano Letters, 1(8): 439-441.   DOI
21 Garcia Lodeiro, I.; Macphee, D.E., Palomo, A. and Fernaandez-Jimenez, A. (2009), "Effect of Alkalis on Fresh C-S-H Gels. FTIR Analysis", Cement Concrete Res., 39, 147-153.   DOI
22 Garcia Lodeiro, I.; Palomo, A., Fernaandez-Jimenez, A. and Macphee, D.E. (2011), "Compatibility studies between N-A-S-H and C-A-S-H Gels. study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O", Cement Concrete Res., 41(9), 923-931.   DOI
23 Garcia-Lodeiro, I.; Fernandez-Jimenez, A., Palomo, A. and Macphee, D.E. (2010), "Effect on fresh CS-H gels of the simultaneous addition of alkali and aluminum, Cement Concrete Res., 40, 27-32.   DOI
24 Ghandi Rouainia and Kamal Djeghaba (2008), "Evaluation of Young's modulus of single walled Carbon Nanotubes (SWNT) Reinforced Concrete Composite", J. Eng. Appl. Sci., 3(6), 504-515.
25 Hamon, M.A., Hui, H. and Bhowmik, P. (2002), "Ester-functionalized soluble single-walled carbon nanotubes", Appl. Phys. A., 74(3), 333-338.
26 Heister, E., Lamprecht, C., Neves, V., Tilmaciu, C., Datas, L. and Emmanuel Flahaut, E. (2010), "Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments", ACS Nano, 4(5), 2615-2626.   DOI
27 Han, B., Yu X. and Ou, J. (2011), "Multifunctional and smart carbon nanotube reinforced cement-based materials", Nanotechnology in Civil Infrastructure, Springer, 1-47.
28 Hanjitsuwan, S., Chindaprasirt, P. and Pimraksa, K. (2011), "Electrical conductivity and dielectric property of fly ash geopolymer pastes", Int. J. Miner. Metall. Mater., 18(1), 94-99.   DOI
29 Hardjito, D. and Rangan, B.V. (2005), Development and Properties of Low-Calcium Fly Ash Based Geopolymer Concrete, Research Report GC1, Curtin University of Technology Perth, Australia.