• Title/Summary/Keyword: Water-Binder Ratio

Search Result 489, Processing Time 0.025 seconds

Effect of Blast Furnace Slag on Rheological Properties of Fresh Mortar (고로슬래그미분말의 치환율 변화에 따른 굳지않은 모르타르의 레올로지 특성 검토)

  • Lim, Ji-Hee;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.285-291
    • /
    • 2014
  • Partial replacement of cement with blast furnace slag has many advantages such as the reduction of construction fee, the decrease of hydration heat and the increase of long-term strength. Hence, slag is widely used in practice. This study investigates the effect of slag on the rheological properties of cement paste and mortar. Three different types of slag (BS1, BS2 and BS3) with five different contents (0, 20, 40, 60 and 80 wt.%) were used to replace the cement. Each type of slag has different fineness. Water to binder ratio was 0.5. Test results showed that the partial replacement of BS1 and BS2 decreased flow and increased O-lot flow time, whereas that of BS3 caused an opposite effect, i.e., increased flow and decreased O-lot flow time. It was found that there was a good corelation between the values of yield stress and flow.

Changes in Cement Hydrate Characteristics and Chloride Diffusivity in High Performance Concrete with Ages (재령에 따른 고성능 콘크리트의 수화 특성치와 염화물 확산성 변화)

  • Koh, Tae-Ho;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.9-17
    • /
    • 2019
  • Cement hydrates and the related characteristics change with ages, and the behaviors are much related with chloride diffusion. In this work, 30% replacement ratio with FA(Fly Ash) and GGBFS(Ground Granulated Blast Furnace Slag) are considered for concrete with three levels of W/B (Water to Binder ratio) and 2 years of curing period. Chloride diffusion coefficients from accelerated condition are obtained at 5 measurement period (28days, 56days, 180days, 365days, and 730days), and the results are compared with porosity, binding capacity, and permeability from program-DUCOM. The similar changing pattern between chloride diffusion and permeability is observed since permeability is proportional to the square of porosity. Curing period is grouped into 4 periods and the changing ratios are investigated. Cement hydrate characteristics such as porosity, permeability, and diffusion coefficient are dominantly changed at the early ages (28~56 days), and diffusion coefficient in OPC concrete with low W/B continuously changes to 180days.

Influence of Cement types on the Resistance to Acid and Sulfate (산 및 황산염 저항성에 미치는 시멘트 종류의 영향)

  • Park, Jae-Im;Bae, Su-Ho;Yu, Kyung-Geun;Lee, Kwang-Myong;Cha, Soo-Won;Chol, Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.421-424
    • /
    • 2008
  • The purpose of this experimental research is to investigate the influence of cement types on the resistance to acid and sulfate. For this purpose, concrete specimens with three types of cement such as ordinary portland cement(OPC), binary blended cement(BBC), and ternary blended cement(TBC) were made for water-binder(W/B) ratios of 32% and 43%, and then according to JSTM C 7401, the appearance change and ratio of mass change of them were estimated through the immersion tests by 5% sulfuric acid, 10% sodium sulfate, and 10% magnesium sulfate solution, respectively. It was observed from the test result that the resistance against acid and sulfate increased with decreasing W/B ratio and those of BBC and TBC concretes were better than the case of OPC concrete from immersion tests of 91 days.

  • PDF

Electrochemical Characteristics of MnO2 Electrodes as a function of Manufacturing Process (제조공정에 따른 MnO2산화물 전극의 전기화학적 특성)

  • 김현식;이해연;허정섭;이동윤
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.486-491
    • /
    • 2004
  • Dimensionally stable anode(DSA) can be used for the hydro-metallurgy of non-ferrous metals like as Zn, and the electrolysis of sea water. MnO$_2$ electrode satisfies the requirements of DSA, and has a good cycle life and a low overpotential for oxygen evolution. MnO$_2$ electrodes based on Ti matrix were prepared by using thermal decomposition method and also MnO$_2$ was coated on Ti and Pb matrix with DMF and PVDF compositions. The MnO$_2$ electrodes prepared by thermal decomposition method had very weak adhesive strength onto Ti matrix and MnO$_2$ layer was removed out so that electrochemical properties for MnO$_2$ were not investigated. The viscosity of solvent used as a binder of MnO$_2$ Powder increased with the increasing PVDF contents. The thickness of the MnO$_2$ layer on Pb matrix in DSA, which was prepared with 5 times dipping at the solution mixed with PVDF : DMF = 1 : 9, was 150${\mu}{\textrm}{m}$. When the ratio of PVDF to MnO$_2$ was lower than 1 : 6, the Pb electrode didn't show any reaction irrespective of the concentrations of DMF. However, When the ratio of PVDF to MnO$_2$ was higher than 1: 6, the Pb electrode showed constant current reactions and homogeneous cyclic voltammetry even though at a high cycle. The reason for the high current and homogeneous cyclic voltammetry is the good catalytic reactions of MnO$_2$ powder in electrode.

A Study of 240MPa Ultra High Strength Concrete Properties Using High Flow Cement (하이플로 시멘트를 이용한 240MPa 초고강도 콘크리트 물성에 관한 연구)

  • Kim, Kang-Min;Yoo, Seung-Yeup;Song, Yong-Soon;Koo, Ja-Sul;Kang, Suck-Hwa;Jeon, Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.365-368
    • /
    • 2008
  • This research is related to 240MPa ultra-high strength concrete(UHSC) with extremely loss W/B ratio. For this development, High flow cement is mainly used which has a short reaction rate due to the high blaine and high early strength, which can make greater fluidity in case of very low W/C ratio. It made the best mixture using the mineral admixtures silica fume, slag powder and special admixture. For dispersibility and homogeneity of cement binder, cement of premix type is produced using omni-mixer. Moreover, it ensures the fluidity of ultra-high strength concrete(UHSC). For having a good fire performance, we made an experiment special coarse aggregate. As a result, we got 180MPa in case of water curing, 200MPa in case of steam curing and uniform UHSC of 240MPa in case of a special curing method.

  • PDF

Evaluation of Durability Performance of Fly Ash Blended Concrete due to Fly Ash Replacement with Tire Derived Fuel Ash (타이어 고무 애쉬 치환에 따른 플라이애쉬 혼입 콘크리트의 내구성능 성능 평가)

  • Kwon, Seung-Jun;Yoon, Yong-Sik;Park, Sang-Min;Kim, Hyeok-Jung
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.647-653
    • /
    • 2016
  • In the paper, durability performance in FA (Fly Ash) blended concrete is evaluated considering replacement of FA with TDFA (Tire Derived Fuel Ash) from 3.0% to 12%. TDFA is a byproduct from combustion process in thermal power plant, where chopped rubber is mixed for boiling efficiency. This is the 1st study on application of TDFA to concrete as mineral admixture. For the work, concrete samples containing 0.5 of w/b (water to binder) ratio and 20% replacement ratio of FA are prepared. With replacing FA with TDFA to 12%, durability performance is evaluated regarding compressive strength, carbonation, chloride diffusion, and porosity. The results of compressive strength, carbonation, and porosity tests show reasonable improvement in durability performance to 12% replacement of TDFA. In particular, clear decreasing diffusion coefficient is observed with increasing TDFA replacement due to its packing effect. Concrete containing TDFA can be effective for durability improvement when workability is satisfied in mixing stage.

Effect of Emulsified Refine Cooking Oil and Expandable Microsphere on Durability of High-Volume Blast Furnace Slag Concrete (정제유지류 및 팽창성 인공 기포 조합이 고로슬래그 다량치환 콘크리트의 내구성 및 미시적 특성에 미치는 영향)

  • Han, Min-Cheol;Han, Dongyeop;Lee, Myung-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.201-207
    • /
    • 2015
  • In this paper, a series of experiments was conducted to evaluate the resistibility of carbonation and freeze-thawing damage of the high-volume blast furnace slag concrete using expancel, the expandable microsphere, and ERCO, emulsified refine cooking oil. The concrete mixture of 0.45 water-to-binder ratio with 60% of blast furnace slag was evaluated for carbonation, freeze-thawing resistibility, SEM, and porosity. According to the previous research, replacing ERCO contributes on improving carbonation resistibility with capillary pore filling effect by soap foaming reaction of ERCO while significantly decreased freeze-thawing resistibility. To improve this decreased freeze-thawing resistibility, expancel was used, and thus freeze-thawing resistibility was improved as the replacement ratio of expancel was increased. It is considered that the selective volume shrunken effect of expancel due to the external pressure and decreased air void spacing factor due to expancel.

Effect of Concrete Water-Binder Ratio and Mineral Admixture on Corrosion Estimation by Electro-Chemical Method (콘크리트 물-결합재비 및 광물질 혼화재가 전기-화학적 기법에 의한 부식 평가에 미치는 영향)

  • Yang, Eun-Ik;Choi, Yoon-Suk;Han, Sang-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.75-81
    • /
    • 2010
  • In this study, when concrete properties are changed by concrete mix proportions or blending of admixtures, the characteristics of electro-chemical method for corrosion assessment of the embedded steel are compared and its causes are analyzed. According to the results, when the ratio of corroding area was less than 10%, the half-cell method was affected by concrete properties. In the case of specimen blended admixtures, it is possible to assess the high-corroded steel qualitatively using the half-cell method. For the polarization resistance method, though the corroding area was less than 10%, it has not affected by concrete properties. However, in case of specimen blended admixtures, the corrosion level of steel was underestimated than OPC specimens having a similar corroding area.

Effect of pumice powder and artificial lightweight fine aggregate on self-compacting mortar

  • Etli, Serkan;Cemalgil, Selim;Onat, Onur
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.241-252
    • /
    • 2021
  • An experimental program was conducted to investigate the fresh properties, mechanical properties and durability characteristics of the self-compacting mortars (SCM) produced with pumice powder and Artificial Lightweight Fine Aggregate (aLWFA). aLWFA was produced by using fly ash. A total of 16 different mixtures were designed with a constant water-binder ratio of 0.37, in which natural sands were partially replaced with aLWFA and pumice powder at different volume fractions of 5%, 10% and 15%. The artificial lightweight aggregates used in this study were manufactured through cold bonding pelletisation of 90% of class-F fly ash and 10% of Portland cement in a tilted pan with an ambient temperature and moisture content. Flowability tests were conducted on the fresh mortar mixtures beforehand, to determine the self-compacting characteristics on the basis of EFNARC. To determine the conformity of the fresh mortar characteristics with the standards, mini-slump and mini-V-funnel tests were carried out. Hardened state tests were conducted after 7, 28 and 56 days to determine the flexural strength and axial compressive strength respectively. Durability, sorptivity, permeability and density tests were conducted at the end of 28 days of curing time. The test results showed that the pumice powder replacement improved both the fresh state and the hardened state characteristics of the mortar and the optimum mixture ratio was determined as 15%, considering other studies in the literature. In the aLWFA mixtures used, the mechanical and durability characteristics of the modified compositions were very close to the control mixture. It is concluded in this study that mixtures with pumice powder replacement eliminated the negative effects of the aLWFA in the mortars and made a positive contribution.

Ensembles of neural network with stochastic optimization algorithms in predicting concrete tensile strength

  • Hu, Juan;Dong, Fenghui;Qiu, Yiqi;Xi, Lei;Majdi, Ali;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.205-218
    • /
    • 2022
  • Proper calculation of splitting tensile strength (STS) of concrete has been a crucial task, due to the wide use of concrete in the construction sector. Following many recent studies that have proposed various predictive models for this aim, this study suggests and tests the functionality of three hybrid models in predicting the STS from the characteristics of the mixture components including cement compressive strength, cement tensile strength, curing age, the maximum size of the crushed stone, stone powder content, sand fine modulus, water to binder ratio, and the ratio of sand. A multi-layer perceptron (MLP) neural network incorporates invasive weed optimization (IWO), cuttlefish optimization algorithm (CFOA), and electrostatic discharge algorithm (ESDA) which are among the newest optimization techniques. A dataset from the earlier literature is used for exploring and extrapolating the STS behavior. The results acquired from several accuracy criteria demonstrated a nice learning capability for all three hybrid models viz. IWO-MLP, CFOA-MLP, and ESDA-MLP. Also in the prediction phase, the prediction products were in a promising agreement (above 88%) with experimental results. However, a comparative look revealed the ESDA-MLP as the most accurate predictor. Considering mean absolute percentage error (MAPE) index, the error of ESDA-MLP was 9.05%, while the corresponding value for IWO-MLP and CFOA-MLP was 9.17 and 13.97%, respectively. Since the combination of MLP and ESDA can be an effective tool for optimizing the concrete mixture toward a desirable STS, the last part of this study is dedicated to extracting a predictive formula from this model.