DOI QR코드

DOI QR Code

Evaluation of Durability Performance of Fly Ash Blended Concrete due to Fly Ash Replacement with Tire Derived Fuel Ash

타이어 고무 애쉬 치환에 따른 플라이애쉬 혼입 콘크리트의 내구성능 성능 평가

  • Received : 2016.03.14
  • Accepted : 2016.10.13
  • Published : 2016.12.30

Abstract

In the paper, durability performance in FA (Fly Ash) blended concrete is evaluated considering replacement of FA with TDFA (Tire Derived Fuel Ash) from 3.0% to 12%. TDFA is a byproduct from combustion process in thermal power plant, where chopped rubber is mixed for boiling efficiency. This is the 1st study on application of TDFA to concrete as mineral admixture. For the work, concrete samples containing 0.5 of w/b (water to binder) ratio and 20% replacement ratio of FA are prepared. With replacing FA with TDFA to 12%, durability performance is evaluated regarding compressive strength, carbonation, chloride diffusion, and porosity. The results of compressive strength, carbonation, and porosity tests show reasonable improvement in durability performance to 12% replacement of TDFA. In particular, clear decreasing diffusion coefficient is observed with increasing TDFA replacement due to its packing effect. Concrete containing TDFA can be effective for durability improvement when workability is satisfied in mixing stage.

본 연구에서는 FA (Fly Ash)를 20%치환한 배합에 대하여 TDFA (Tire Derived Fuel Ash)를 3.0~12.0%까지 중량 치환하면서 내구성 평가를 수행하였다. TDFA는 열병합발전소에서 열효율을 높이기 위해 폐타이어를 혼소시킨 뒤 발생한 산업부산물로서 국내에서 콘크리트에 적용한 연구는 없는 상태이다. 이를 위해 물-결합재를 50%, FA를 20% 치환한 Control 콘크리트를 제조하였으며, TDFA를 치환하면서 압축강도, 촉진 탄산화 시험, 촉진염해 시험, 공극구조평가를 수행하였다. 압축강도, 탄산화, 공극구조에서는 12%까지 TDFA를 FA와 치환해도 동등이상의 성능을 확보하였다. 특히 염해에 대해서는 TDFA의 치환률의 증가에 따라 뚜렷한 염화물 확산계수의 감소를 나타내어 최종적으로 75.3~70.9%까지 염화물 확산계수가 감소하였다. TDFA를 혼입한 콘크리트 배합시, 워커빌리티의 확보가 가능하다면 TDFA를 혼입한 콘크리트는 내구성 개선에 효과적일 것으로 판단된다.

Keywords

References

  1. Broomfield, J. P., Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E&FN, London, 1997, pp. 1-15.
  2. Sarja, A., and Vesikari, E., Durability Design of Concrete Structures, Report of RILEM Technical Committee 130-CSL, E&FN, London, 1994, pp. 28-52.
  3. Kwon, S.-J., Park, S.-S., and Lho, B.C., "Durability Evaluation of Inorganic-Impregnated Concrete Exposed Long-Term Chloride Exposure Test", Journal of the Korea Concrete Institute, Vol. 20, No. 3, 2008, pp. 283-290. https://doi.org/10.4334/JKCI.2008.20.3.283
  4. Moon, H. Y., Shin, D. G., and Choi, D. S., "Evaluation of the Durability of Mortar and Concrete Applied with Inorganic Coating Material and Surface Treatment System", Construction and Building Materials, Vol .21, No. 2, 2007, pp. 362-69. https://doi.org/10.1016/j.conbuildmat.2005.08.012
  5. Back, J. H., Tae, S. H., Roh, S. J., Lee, J. H., and Shin, S. W., "A Study on the Requisite Elements of $LCCO_2$ Evaluation System at Planning Stage of Building", Korean Journal of Construction Engineering and Management, Vol. 12, No. 3, 2011, pp. 31-41. https://doi.org/10.6106/KJCEM.2011.12.3.31
  6. Lee, S. H., Park, W. J., and Lee, H. S., "Lifecycle $CO_2$ Assessment Method for Concrete using $CO_2$ Balance and Suggestion to Decrease $LCCO_2$ of Concrete in South-Korean Apartment", Energy and Buildings, Vol. 58, No. 1, 2013, pp. 93-102. https://doi.org/10.1016/j.enbuild.2012.11.034
  7. Oh, B. H., and Koh, C. K., "A Study on the Strength and Mechanical Characteristics of Normal and High-Strength Fly-Ash Concretes", Journal of the Korea concrete institute, Vol. 3, No. 6, 2012, pp. 87-95.
  8. Saraswathy, V., Muralidharan, S., and Srinivasan, S., "Electrochemical Studies on the Corrosion Performance of Activated Fly Ash Blended Cements", Materials Engineering, Vol. 14, No. 3, 2003, pp. 261-284.
  9. Choi, S., Lee, K. M., Jung, S. H., and Kim, J. H., "A Study on the Carbonation Characteristics of Fly Ash Concrete by Accelerated Carbonation Test", Journal of the Korea Concrete Institute, Vol. 21, No. 4, 2009, pp. 449-455. https://doi.org/10.4334/JKCI.2009.21.4.449
  10. Yoo, S. W., Koh, K. T., Kwon, S. J., and Park, S. G., "Analysis Technique for Flexural Behavior in RC Beam Considering Autogenous Shrinkage Effect", Construction and Building Materials, Vol. 47, No. 1, 2013, pp. 560-568. https://doi.org/10.1016/j.conbuildmat.2013.05.061
  11. Kwon, S. J., Na, U. J., Park, S. S., and Jung, S. H., "Service life prediction of concrete wharves with early-aged crack: probabilistic approach for chloride diffusion", Structural Safety, Vol. 31, No. 1, 2009, pp. 75-83. https://doi.org/10.1016/j.strusafe.2008.03.004
  12. Maekawa, K., Ishida, T., and Kishi, T., "Multi-scale modeling of concrete performance integrated material and structural mechanics", Journal of Advanced Concrete Technology, Vol. 1, No. 2, 2003, pp. 91-126. https://doi.org/10.3151/jact.1.91
  13. Neville, A. M., Properties of concrete: 4th ed, England: Longman Group, 1995, England, pp. 23-58.
  14. Lee, H. H., and Kwon, S. J., "Evaluation of Chloride Penetration in Concrete with Ground Granulated Blast Furnace Slag Considering Fineness and Replacement Ratio", Journal of the Korean Recycled Construction Resources Institute, Vol. 1, No. 1, 2013, pp. 26-34. https://doi.org/10.14190/JRCR.2013.1.1.026
  15. Lee, M. Hi., Kwon, S. J., and Park, K. T., "Mechanical Properties in Rice Husk Ash and OPC Concrete with Coconut Fiber Addition Ratios", Journal of the Korea institute for Structural Maintenance Inspection, Vol. 19, No. 2, 2015, pp. 117-124. https://doi.org/10.11112/jksmi.2015.19.2.117
  16. Al-Akhras, N. M., and Smadi, M. M., "Properties of Tire Rubber Ash Mortar", Cement and Concrete Composites, Vol. 26, No. 7, 2004, pp. 821-826. https://doi.org/10.1016/j.cemconcomp.2004.01.004
  17. Jung, S. H., and Kwon, S. J., "Engineering Properties of Cement Mortar with Pond Ash in South Korea as Construction Materials: from waste to concrete", Central European journal of engineering, Vol. 3, No. 3, 2013, pp. 522-533.
  18. Tang, L., "Electrically Accelerated Methods for Determining Chloride Diffusivity in Concrete-Current Development", Magazine of Concrete Research, Vol. 48, No. 176, 1996, pp. 173-179. https://doi.org/10.1680/macr.1996.48.176.173
  19. KS F 2405, Standard test method for compressive strength of concrete, Korean Standards Service Network, 2010, pp. 1-3.
  20. KS F 2584, Standard test method for accelerated carbonation of concrete, Korean Standards Service Network, 2015, pp. 1-4.
  21. Kobayashi, K., and Uno, Y., "Mechanism of carbonation of concrete", Concrete Library of JSCE, Vol. 16, No. 12, 1990, pp. 139-151.
  22. Kwon, S. J., and Song, H. W., "Analysis of Carbonation Behavior in Concrete using Neural Network Algorithm and Carbonation Modeling", Cement and Concrete Research, Vol. 40, No. 1, 2010, pp. 119-127. https://doi.org/10.1016/j.cemconres.2009.08.022
  23. Choi, S., Lee, K. M., Jung, S. H., and Kim, J.-H., "A Study on the Carbonation Characteristics of Fly Ash Concrete by Accelerated Carbonation Test", Journal of the Korea Concrete Institute, Vol. 21, No. 4, 2009, pp. 449-455. https://doi.org/10.4334/JKCI.2009.21.4.449